
Fast Gaussian processes for spatiotemporal data

via hierarchical matrix compression

by

Junhyung Chang

A thesis submitted in partial fulfillment

Of the requirements for the degree of

Master of Science

Courant Institute of Mathematical Sciences

New York University

May, 2022

(signature line)

Michael O’Neil

Abstract

For 1-d and 2-d input data, which are the types of data that are encoun-
tered in spatiotemporal data analysis, many kernels generate matrices that
are hierarchically low-rank. Hence, hierarchical matrix compression schemes
can be utilized for kernel methods including Gaussian process regression. The
various types of hierarchical matrix factorization methods based on how the
matrix is tessellated, how each block is compressed, which blocks to compress,
etc., are reviewed. The HODLR factorization, recursive skeletonization fac-
torization, and matrix peeling are implemented, as they are particularly useful
for Gaussian processes. A full Gaussian process regression workflow based on
hierarchical matrix factorizations is developed in this thesis.

Acknowledgements

I am greatly thankful to the members of my family for giving me all the love and
support one can wish for.

I am also deeply grateful to professor O’Neil, first, for his genuine willingness
to help, and second, for all the insightful and valuable pieces of advice regarding
numerical analysis and life overall. At least one problem in my life would always be
resolved after a conversation with professor O’Neil.

ii

List of Tables

1.1 Error of ACA, and length of index set Iskel for increasing tolerance
values. 6

4.1 The rank growth of the 500 × 500 off-diagonal block B in figure 4.2
for increasing d. The rank was computed using Matlab’s rank function. 31

5.2 Run-time in seconds and error for computing the trace using matrix
peeling . 36

5.3 Number of iterations and value of estimated hyperparameter of the
RBF kernel (characteristic length-scale ℓ) learned from the data using
Matlab’s fminunc. The data was generated uniformly on the interval
[−3, 3]. The initial point x0 was set to 1 for all cases. 36

6.4 Run-time in seconds and error for computing posterior mean and
variance using an eigenvalue decompositian via randomized SVD with
squared exponential kernel. 38

6.5 Run-time in seconds and error for computing posterior mean and
variance using an eigenvalue decompositian via randomized SVD with
Matérn kernel . 38

6.6 Run-time in seconds and error for computing posterior mean and
variance using HODLR factorization with squared exponential kernel.
Compared to the simple low rank approximation scheme in Table 6.4,
the target rank required for a similar level of precision is much lower
for HODLR when d = 2, which shows it is a more efficient compression
scheme. 39

6.7 Run-time in seconds and error for computing posterior mean and
variance using HODLR factorization with Matérn kernel 39

6.8 Run-time in seconds and error for computing posterior mean and vari-
ance using recursive skeletonization factorization (RSF) with squared
exponential kernel. 40

6.9 Run-time in seconds and error for computing posterior mean and vari-
ance using recursive skeletonization factorization (RSF) with Matérn
kernel . 40

6.10 Run-time in seconds and error for computing posterior mean and
variance using KL-expansion based eigenvalue decomposition with
squared exponential kernel . 42

iii

6.11 Run-time in seconds and error for computing posterior mean and
variance using KL-expansion based eigenvalue decomposition with
Matérn kernel . 42

iv

List of Figures

3.1 Types of hierarchical matrices . 9
3.2 Relationship between H-matrices . 9
3.3 The DOFs in I1;1 are re-ordered so that the k skeleton DOFs come at

the beginning. 14
3.4 After eliminating Apr and Arp. 15
3.5 After eliminating Bsr and Brs. I1;1 is sparsified, and D̂ is decoupled

from the system. 16
3.6 A 2-d example of active DOFs after levels 1, 2, 3, 4 of RSF respec-

tively. Note that the remaining DOFs at each level appear to be close
to the boundary of each subdomain. 17

3.7 Sparsity pattern of the near diagonal matrix after levels 1, 2, 3, 4 of
RSF respectively. Note that the off diagonal blocks can be combined
into a larger diagonal block by a single additional row and column
permutation. 18

3.8 The range-finding process in Level 1 of matrix peeling. The goal is
to simultaneously find the approximate bases of A12 and A21, which
are Y1, and Y2 respectively. 19

3.9 The factorization process in Level 1 of matrix peeling. 20
3.10 The range-finding process in Level 2 of matrix peeling. The goal is to

simultaneously find the approximate bases of A12, A21, A34, A43, which
are Y1, Y2, Y3, Y4 respectively. Note that the gray area is suppressed
by subtracting A(1) from A. 20

3.11 The factorization process in Level 2 of matrix peeling. Note that the
low-rank factors are getting larger, but can be stored in sparse format
to save memory. Also, in practice, the factors U and V are usually
much taller and narrower than depicted in this figure. 21

3.12 Sparsity pattern of A−
∑ℓ

i=1A
(i) (up to a small threshold) after levels

1,2,3,4 of HODLR matrix peeling. 22

4.1 The spectral decay of 1024 × 1024 Gram matrices generated by the
squared exponential kernel (ℓ = 1), exponential kernel (ℓ = 1), and
the Matérn kernel (ℓ = 1, ν = 5/2) as the dimension of the data
increases from 1 to 4. 30

v

4.2 A 1000 × 1000 Gram matrix K generated by evaluating k(x, x′) at
1000 uniformly drawn points from the interval [−0.5, 0.5]. Table 4.1
compares the rank growth of the 500 × 500 off-diagonal block B for
increasing d. 31

7.3 HODLR factorization is used to compute the posterior distribution
of the Gaussian process with noise ε ∼ N (0, 0.01), and the squared
exponential (RBF) kernel. The posterior mean is the line in blue,
and the gray area represents the pointwise 95 percent confidence in-
terval of the test output. The increased characteristic length-scale
parameter appears to smooth the variance. 43

7.4 HODLR factorization is used to compute the posterior distribution
of the Gaussian process with noise ε ∼ N (0, 0.01), and the Matérn
kernel. The posterior mean is the line in blue, and the gray area
represents the pointwise 95 percent confidence interval of the test
output. The increased parameter ν also appears to smooth the variance. 43

7.5 HODLR factorization is used to compute the posterior mean of the 2-
d input Gaussian process with noise ε ∼ N (0, 0.01), and the squared
exponential (RBF) kernel. The 4096 × 2 data matrix was drawn
uniformly from [−3, 3]× [−3, 3]. In the plot on the left, the kernel has
characteristic length-scale ℓ = 2, and in the right plot, ℓ = 4. The
increased parameter ℓ appears to smooth out the mean function. . . . 44

vi

Contents

Acknowledgements ii

List of tables iv

List of figures vi

Introduction ix

I Preliminaries: Numerical Linear Algebra 1
1 Low-rank approximations . 1

1.1 Randomized SVD . 2
1.1.1 Computing the range-finder 2
1.1.2 Randomized approximate SVD 3
1.1.3 A single-pass algorithm for the randomized eigen-

value decomposition 3
1.1.4 Computational complexity 4

1.2 Rank-revealing factorizations, and computing the interpola-
tive decomposition (ID) . 4

1.3 CUR approximation algorithms 5
1.3.1 Adaptive cross approximation (ACA) 6

2 Matrix identities . 6
2.1 Inverting a block partitioned matrix 6
2.2 Sherman-Morrison-Woodbury inversion formulas 7

2.2.1 The matrix inversion lemma 7
2.3 Weinstein–Aronszajn (Sylvester) determinant identity 8

3 Hierarchical matrices . 9
3.1 Taxonomy of H-matrices . 9
3.2 k-d tree structure and indexing notation 10
3.3 The hierarchical off-diagonal low-rank (HODLR) framework . 10

3.3.1 The HODLR factorization and solver 11
3.3.2 Computational complexity 12
3.3.3 Computing the determinant 12

3.4 Recursive skeletonization factorization (RSF) 12
3.4.1 Computational complexity and accelerating the re-

cursive skeletonization factorization 17
3.4.2 Higher dimensions 17

vii

3.4.3 Computing the determinant 18
3.5 Trace estimation via matrix peeling 19

3.5.1 Extracting the trace 21
3.5.2 Computational complexity 22

3.6 References . 23

II Fast Frameworks for Gaussian processes 24
4 Overview of Gaussian processes . 24

4.1 Gaussian processes for statistical inference 24
4.1.1 Bayesian linear model formulation 25
4.1.2 Function space formulation 27
4.1.3 Hyperparameter maximum likelihood estimation . . 28
4.1.4 Kernels, Gram matrices, and the curse of dimension-

ality . 28
4.2 Survey of fast algorithms for Gaussian processes 31

4.2.1 Hierarchical matrix factorizations 32
4.2.2 Analytic techniques 33
4.2.3 Iterative methods . 33
4.2.4 Approximate methods 33

5 Fitting kernel hyperparameters . 34
5.1 Evaluating the marginal log-likelihood and its gradient 34

5.1.1 Trace estimation . 35
5.2 Numerical results . 36

6 Prediction . 36
6.1 Direct randomized approximate spectral decomposition ap-

proach . 37
6.1.1 Numerical results . 37

6.2 Hierarchical matrix factorization approach 37
6.2.1 HODLR factorization 37
6.2.2 Recursive skeletonization factorization 38
6.2.3 Numerical results . 38

6.3 Analytical techniques for low-rank approximations 39
6.3.1 Computing the Karhunen-Loéve expansion of a GP . 39
6.3.2 GP regression via KL-expansion 41
6.3.3 Numerical results . 42

7 Results . 42
8 Conclusion . 44

References 45

viii

Introduction

This thesis aims to explore the various matrix compression techniques that can be
used for Gaussian process regression. These compression schemes typically lead to
a matrix factorization that can be directly applied or inverted, hence these methods
are often called direct solvers (in contrast to iterative solvers).

This thesis is organized into two parts. In part I, linear algebraic fundamentals
are reviewed (sections 1, 2), then hierarchical matrices and some useful hierarchical
matrix factorizations are introduced in section 3. In part II, the idea behind Gaus-
sian process regression is developed, and some computational issues that commonly
arise in applications are discussed in section 4. Then, the topic of finding the best
fit hyperparameters using a maximum likelihood framework is included in section
5. Finally, section 6 contains information on computing the predictive distribution
accompanied by numerical experiments.

Mostly 1-d, and 2-d input data are concerned in this thesis. Kernel matrices gen-
erated by high dimensional data (d > 2) typically have higher rank than matrices
generated from low dimensional data. Since hierarchical solvers require low-rank,
they typically perform the best on 1-d (time series) or 2-d (spatial) problems. Devel-
oping efficient direct solvers for 3-d data requires a more sophisticated compression
scheme that utilizes knowledge of the underlying physics of the problem. This rank
growth in kernel matrices is one manifestation of the curse of dimensionality, and is
explored further in section 4.1.4.

Another important theme is the use of randomization to accelerate certain matrix
compression techniques when the system size is large. Randomized algorithms are
introduced throughout part I, and numerical experiments are contained in part II.

ix

Part I Preliminaries:
Numerical Linear Algebra

1 Low-rank approximations

Basic linear algebra subprograms (BLAS) involving dense matrices are often com-
putationally expensive. For a dense matrix A ∈ Rn×n, BLAS level 2 routines such
as matrix-vector multiplies typically cost O(n2) flops, and level 3 routines such
as matrix-matrix multiplies, matrix inversion, and computing matrix factorizations
typically cost O(n3) flops if implemented naively. Fortunately, many matrices that
arise in engineering and science applications have special structure which allows the
operations above to be performed in much less time. Some examples of matrices
with special structure include:

• Sparse matrices.

• (Numerically) low-rank matrices. A matrix A ∈ Rm×n has numerical ε-rank k if

inf{∥A−X∥ : rank(X) = k} ≤ ε. (1.1)

It is not often the case that a matrix has exact rank k < min(m,n), even in
the case of rapid spectral decay. This is because the smaller singular values are
usually near machine precision, but not exactly zero. When a matrix is numeri-
cally low-rank, a truncation of a rank-revealing factorization can approximate the
matrix very well, and can also accelerate matrix computations. A particularly
insightful rank-revealing factorization that exists for every matrix is the singular
value decomposition (svd). Consider the truncated svd of length k:

A
m×n
≈ Ak = U

m×k
S
k×k

V
k×n

⊤ =
k∑

i=1

σiuiv
⊤
i , (1.2)

where k ≤ min(m,n), and ui, vi are the i-th columns of U and V respectively.
The Eckart-Young-Mirsky theorem [11] states that Ak in (1.2) is the best rank-k
approximation in both operator and Frobenius norms, and also provides exact
errors in both norms as well. Looking at the sum in equation (1.2), a rank-k
matrix can be well approximated using just k pairs of singular vectors. Hence,
low-rank matrices are often referred to as data-sparse, even though the matrix A
itself is dense.

1

• Fast transform matrices such as the fast Fourier transform (FFT) matrix, fast
Walsh-Hadamard transform matrix, etc. Applying these transforms to a single
vector typically has O(n log n) complexity.

• Kernel matrices that arise from Green’s functions of a differential operator. In
this case, the fast multipole method (FMM) can be applied to perform a matrix-
vector multiply in O(n) operations.

In this chapter, several low-rank approximation techniques that are widely used in
Gaussian process regression, and other data science applications are explored.

1.1 Randomized SVD

1.1.1 Computing the range-finder

Let K ∈ Cm×n, m ≤ n be any matrix of numerical rank r < m. The key idea of any
randomized approximate factorization is to find an approximate orthonormal basis
Q for the range of K using a randomized scheme. Once Q is found, then K can be
approximated by the projection of K onto the approximate range spanned by Q,
namely

K ≈ QQ∗K. (1.3)

From the expression (1.3), one can form various low-rank factorizations of K such
as the SVD, QR factorization, interpolative decomposition, etc., via standard de-
terministic linear algebra routines. For example, a simple algorithm from [20], [31]
which uses (1.3) to form an approximate SVD of K is reviewed in section 1.1.2.

The main computational hurdle of randomized methods is finding the approxi-
mate basis Q, which the authors of [20], [31] call “Stage A”. The idea is to draw a
random matrix Ω ∈ Cm×ℓ, where ℓ is the target rank plus an oversampling parameter
p, namely ℓ = r + p, and form

Y = KΩ. (1.4)

In essence, each column of Y is in the range of K, and the columns will be linearly
independent almost surely, due to the random structure of Ω. One can further
orthonormalize the columns of Y via e.g. Gram-Schmidt to form the approximate
orthonormal basis Q.

It is clear that the main computational challenge is the matrix product KΩ in
(1.4), which costs O(mnℓ) flops. In addition, K may even be too large to store in
core memory. Hence, a fast matrix-vector multiplying routine is usually necessary
for such range-finding methods to be applied to matrices where m,n > O(105).

One method to accelerate the dense matrix-matrix multiply in (1.4) is to use
an FMM-type fast summation algorithm when the matrix K is generated by a
kernel function which is also a Green’s function of a linear differential operator.
Alternatively, an iterative matrix-matrix multiply can be performed in parallel if
advanced computing resources are available.

Furthermore, it also turns out that the distribution of Ω can be chosen to accel-
erate the matrix product (1.4). If one simply draws the entries of Ω from a standard
normal distribution, the naive matrix product costs O(mnℓ) flops. However, this

2

can be reduced to O(mn log ℓ) flops when Ω is structured in a specific way. The idea
is to construct Ω so that KΩ first introduces randomness only to the columns of K,
and then further ‘mixes up’ the randomness by applying a near-linear time trans-
formation matrix such as the fast Johnson-Lindenstrauss transform, subsampled
random Fourier transform, fast Walsh-Hadamard transform, etc. [49].

1.1.2 Randomized approximate SVD

Once the range-finder Q is computed, the matrix K can be approximated in the
form (1.3). If one takes the SVD of Q∗K, namely Q∗K = ÛSV ∗, then (1.3) can be
re-written as

K ≈ QÛSV ∗ = USV ∗. (1.5)

It is clear that U = QÛ is unitary. This processes is named “Stage B” in [20], [31].
From (1.3), one can also find a generic low-rank approximation

K ≈ Ũ Ṽ ∗, (1.6)

where Ũ ∈ Cm×r, and Ṽ ∈ Cn×r. This can be done e.g., by taking Ũ = Q, and
Ṽ ∗ = Q∗K. The approximation (1.6) will be used to compress the off-diagonal
low-rank blocks in the HODLR factorization in section 6.2.1.

1.1.3 A single-pass algorithm for the randomized eigenvalue decompo-
sition

While deriving (1.5), one needs to form the matrix Q∗K, and compute its SVD.
This is the second time that the full matrix K is accessed because K was already
used once during “Stage A”, while forming Q. The second call for K can be avoided
by using a method introduced in [20], [31]. There are two versions to this method,
for Hermitian and non-Hermitian matrices respectively. In this thesis, the matrix
K will always be Hermitian only self-adjoint kernels are considered. Therefore, the
Hermitian single-pass algorithm is sufficient for the purposes of this thesis.

Observing (1.3), one can take the complex transpose, and use the fact that K is
Hermitian to write

KQQ∗ ≈ K ≈ QQ∗K. (1.7)

From (1.7), one obtains
K ≈ QQ∗KQQ∗. (1.8)

Let
C = Q∗KQ, (1.9)

and take its eigenvalue decomposition C = ÛDÛ∗. Then, the desired approximate
decomposition of K is

K ≈ QÛDÛ∗Q∗ = UDU∗, (1.10)

where U = QÛ .
Since the goal is not to use K in the computation of C in (1.9), one can alter-

3

natively multiply the matrix Q∗Ω ∈ Cr×r to the right of (1.9) to get

C(Q∗Ω) = Q∗KQQ∗Ω. (1.11)

Since K ≈ KQQ∗, and Y = KΩ is already computed in equation (1.4) during “Stage
A”, one can re-write (1.11) as

C(Q∗Ω) ≈ Q∗KΩ = Q∗Y. (1.12)

Thus C can be computed without using K by solving the system (1.12), which can
be done quickly, since C, Q∗Ω, and Q∗Y are all r × r matrices.

This method speeds up the computation of the eigenvalue decomposition, but is
less accurate than the double-pass algorithm in section 1.1.2.

1.1.4 Computational complexity

Let Tmult denote the cost of computing Ax. It is explained in [20] that the range-
finding stage costs (k + p)Tmult + O(k2m) flops, and the factorization stage costs
(k + p)Tmult +O(k2(m+ n)), totalling in

Ttotal = 2(k + p)Tmult +O(k2(m+ n)). (1.13)

Given a matrix-vector multiply scheme with Tmult ∼ O(m+n), which is often attain-
able when A is sufficiently sparse or structured, the complexity of the randomized
svd is asymptotically linear in both m and n.

1.2 Rank-revealing factorizations, and computing the inter-
polative decomposition (ID)

A rank-revealing factorization of a matrix is often used to determine the numerical
rank of a matrix, and also to compress a low-rank matrix. For a matrix A ∈ Rm×n,
the SVD is the “best” low-rank approximation in terms of error, but is often expen-
sive to compute. An alternative approach is the rank-revealing QR factorization

AΠ = QR = Q

[
R11 R12

0 R22

]
, (1.14)

where Q ∈ Rm×m is unitary, and R ∈ Rm×n is upper triangular. Algorithms for
finding Π so that the larger singular values are condensed in R11 include the Gu and
Eisenstat algorithm [18].

Another alternative is the rank-revealing LU factorization

Π1AΠ2 = LU. (1.15)

The rank-revealing factorization that is used most extensively in this thesis is
the interpolative decomposition (ID). If an m×n matrix A has rank k < min(m, k),

4

then there exist factorization that “interpolates” k rows or columns by

A
m×n

= A(:, Jk)
m×k

X
k×n

(1.16)

A
m×n

= Y
m×k

A(Ik, :)
k×n

(1.17)

A
m×n

= Y
m×k

A(Ik, Jk)
k×k

X
k×n

, (1.18)

where A(·, ·) is the Matlab notation for selecting a subset of rows, and columns of A.
The one-sided ID in equations (1.16), (1.17) is used in the recursive skeletonization
factorization.

Following the notation in [45], the ID can be computed immediately from a
rank-revealing, economy-sized QR factorization

AΠ = QR = Q[R1 R2], (1.19)

where A ∈ Rm×k (k < m), Q ∈ Rm×k is unitary, and R ∈ Rk×n is upper triangular,
and Π is a permutation matrix that orders the columns so that the first k pivots,
or “skeleton” columns, are at the left. It follows that R1 ∈ Rk×k is invertible, and
(1.19) gives us the ID

AΠ = [QR1 QR1(R
−1
1 R2)] := [A(:, s) A(:, s)T] = A(:, s)[I T]. (1.20)

Here, s denotes the index set of skeleton columns. If r is the index set of residual
columns, then (1.20) states that

A(:, r) ≈ A(:, s)T, (1.21)

which is a form that is used extensively in the recursive skeletonization factorization.
The advantage of using the ID for compressing low-rank matrices is that one of

the factors is simply a subset of the rows or columns of A. Hence it preserves the
information of the matrix A, which is useful in situations where A is a discretization
of an operator on a specific domain. In section 3.4, it is shown that the ID allows a
particularly simple expression for some Hierarchical matrix factorizations.

More general information on compressing low-rank matrices can be found in [9].

1.3 CUR approximation algorithms

A CUR approximation of a matrix A is a particularly simple rank-revealing approx-
imate factorization of the form

A = CUR, (1.22)

where C is a subset of the columns of A, and R is a subset of the rows of A. CUR
approximation is popular due to the fact that it is faster to compute than svd or
QR based algorithms, and also because it is structure-preserving like the ID. In fact,
taking, e.g., UR as X in section 1.2, the CUR factorization immediately gives the
ID.

5

It must be noted, however, that it is difficult to find the optimal indices for
the CUR factorization, hence the result of the approximation is often sub-optimal.
However, there are both deterministic and randomized techniques that can reliably
compute CUR approximations.

A variety of both deterministic and randomized methods for computing CUR
approximations can be found in [28], [31], [45].

1.3.1 Adaptive cross approximation (ACA)

Adaptive cross approximation is a method of computing a CUR approximation of
the form

A ≈ A(:, Jskel)(A(Iskel, Jskel))
−1A(Iskel, :), (1.23)

where Iskel and Jskel are index sets of column and row skeletons respectively. The
indices are selected based on a maximum absolute value search over the entries of
the matrix. The search begins from the entry with the largest absolute value. The
row and column corresponding to the entry are deleted via a rank one update

A′ = A− 1

A(i, j)
A(:, j)A(i, :). (1.24)

The search continues over the remaining entries, and the process is repeated until
the maximum value found is less than the prescribed tolerance. This method is fast
and very reliable, but relies on having access to all of the entries in A, which may
be impossible when A cannot be stored in core memory.

For a matrix A ∈ R1024×1024 generated by a squared exponential kernel, table 1.1
shows the accuracy achieved by ACA given a tolerance.

tol |Iskel| error
1e-3 4 8.8401e-03
1e-6 7 1.0372e-05
1e-9 10 1.3055e-09
1e-12 12 1.6540e-12
1e-15 14 5.2273e-15

Table 1.1: Error of ACA, and length of index set Iskel for increasing tolerance values.

2 Matrix identities

2.1 Inverting a block partitioned matrix

The following inversion lemma is used to invert a HODLR factorized matrix in
section 3.3, and also to compute the posterior distribution of a Gaussian process in
section 4.1.2.

6

Definition 2.1 (Schur complement). Consider a block partitioned square matrix

A =

(
P Q
R S

)
. (2.25)

If P−1 exists, the Schur complement of block P is defined as

A/P := S −RP−1Q. (2.26)

Remark 2.1. The Schur complement A/P arises from performing block Gaussian
elimination on A.

Lemma 2.1. If M := (A/P)−1 exists, then

A−1 =

(
P̃ Q̃

R̃ S̃

)
, (2.27)

where

P̃ = P−1 + P−1QMRP−1, (2.28)

Q̃ = −P−1QM, (2.29)

R̃ = −MRP−1 (2.30)

S̃ = M, (2.31)

2.2 Sherman-Morrison-Woodbury inversion formulas

There exist formulas to efficiently invert a rank-k update of a matrix A. First
presented is the original inversion formula by Sherman, Morrison, and Woodbury.
Next, a variation of the formula is introduced.

2.2.1 The matrix inversion lemma

The most general form of the formula is due to Woodbury [34]. This version is useful
for inverting a matrix factorized by the HODLR factorization in section 3.3.

Lemma 2.2 (Woodbury matrix identity). For A
n×n

, U
n×k

, C
k×k

, V
n×k

, and A invertible,

(A+ UCV ∗)−1 = A−1 − A−1U(C−1 + V ∗A−1U)−1V ∗A−1. (2.32)

In particular, if C = I, and k = 1, then

(A+ UV ∗)−1 = A−1 − A−1UV ∗A−1

1 + V ∗A−1U
, (2.33)

which is the form introduced by Sherman and Morrison [42].
The proof of this lemma involves the block inversion formula in (2.27).

7

Remark 2.2. The following lemma is a variation of the Woodbury identity which is
used for inverting an additive matrix factorization such as the recursive skeletoniza-
tion [32].

Lemma 2.3. (A variation of the Woodbury identity) If A invertible, and admits
the factorization

A
n×n

= U
n×k

Ã
k×k

V ∗
k×n

+ D
n×n

, (2.34)

then
A−1

n×n

= E
n×k

(A+ D̂)−1

k×k

F ∗

k×n

+ G
n×n

, (2.35)

where

D̂ = (V ∗DU)−1, (2.36)

E = D−1UD̂, (2.37)

F = (D̂V ∗D−1)∗, (2.38)

G = D−1 −D−1UD̂V ∗D−1, (2.39)

if all the inverses above exist. Also, rank(G) = N −K.

The following proof follows [33, §13].

Proof. First observe that for two invertible matrices X, Y of the same size,

(X−1 + Y −1) = Y − Y (X + Y)−1Y, (2.40)

which is simply the first version of the Woodbury identity (2.32), where A =
X−1, U = I, C = Y −1, V = I. Next, use X = Ã, Y = (V ∗D−1U)−1 for
(2.40), and plug in the results into (2.32) to get (2.35).

2.3 Weinstein–Aronszajn (Sylvester) determinant identity

When A ∈ Rm×m is a low-rank update of the identity matrix, i.e.,

A = Im + UV ⊤, (2.41)

where U, V ∈ Rm×k, k < n, the determinant of A can be computed in an efficient
way by the following lemma.

Lemma 2.4 (Weinstein–Aronszajn identity).

det(Im + UV ⊤) = det(Ik + V ⊤U). (2.42)

That is, the determinant of a large (m × m) matrix can be replaced with the
determinant of the small (k×k) matrix. This lemma is used to find the determinant
of a HODLR factorized matrix in section 3.3.

8

3 Hierarchical matrices

3.1 Taxonomy of H-matrices

Matrices that arise from discretizing a boundary integral operator, or evaluating a
kernel function often have hierarchical rank structure. Although these matrices are
dense, matrix operations such as matrix-vector multiplication, and solving a system
of equations can be performed in near-linear time by exploiting the hierarchical rank
structure.

In this thesis, a class of rank-structured matrices known as H-matrices (Hierar-
chical matrices) are considered. When an H-matrix is partitioned into blocks, some
of the off-diagonal blocks are of (numerical) low-rank, hence can be compressed using
a low-rank approximation.

For the full taxonomy of H-matrices, the concept of admissibility must be intro-
duced. In weakly admissible formats, all off diagonal blocks are compressed at each
level. Strongly admissibile formats refer to compressing only a subset of off-diagonal
blocks at each level.

Also, H-matrices can be categorized by the types of low-rank factors used to
compress the off-diagonal blocks. The HODLR format compresses each off-diagonal
block separately using low-rank factors. Under stricter conditions, the off-diagonal
blocks on the same block-row can be expressed using common low-rank factors,
which leads to the HBS format.

Using the terminology defined above, Hierarchical matrices can be categorized
as in figures 3.1 and 3.2, which are based on the works of Martinsson [33], and
Ambikasaran [1].

Weakly admissible Strongly admissible
General basis functions HODLR H-matrices (not HODLR or H2)
Nested basis functions HBS/HSS H2-matrices

Figure 3.1: Types of hierarchical matrices

H

HSS,
HBSHODLR

H2

FMM

Figure 3.2: Relationship between H-matrices

9

3.2 k-d tree structure and indexing notation

In order to utilize the isometric variance property of certain kernels, it is important
to pre-order the data based on location. In particular, data points with close input
should be clustered together. This can be done by ordering the data based on a k-d
tree structure.

To make the exposition simple, it is convenient to introduce an index system.
Denote the input space as Ω, and let IΩ be the index set of all inputs. In later
sections, Iℓ;j will denote the index set of the j-th subdomain at level ℓ. Note that
for the HODLR decomposition, the levels proceed from coarse to fine, which means
that the size of the index sets will become smaller as the level increases. On the
other hand, for the recursive skeletonization factorization, the levels proceed from
fine to coarse, which means the size of the index sets become larger as the level
increases. The finest nodes are often called the leaf nodes. If a node is a subset of
a greater node, the node is called a child of the greater parent node. Sibling nodes
are nodes that share parent nodes.

In this thesis, only perfect trees are considered. A perfect tree is a binary struc-
ture where each node has exactly two child nodes, and the leaf nodes are all in the
same level. In this setting, a k-d tree sorting can be simply done by first sorting
the data set with respect to the first dimension and equally dividing the domain
into the size of leaf nodes. Next, each node in the data set is sorted separately with
respect to the second dimension, and are again equally divided into the size of leaf
nodes. This process is repeated up until dimension k. A detailed review of various
k-d tree data structures can be found in [41].

3.3 The hierarchical off-diagonal low-rank (HODLR) frame-
work

Definition 3.1 (HODLR condition). Let A be a matrix of size n× n, and let k be
an integer such that k < n. We say that A is a HODLR matrix with rank k if either
of the following conditions holds:

• A is itself of size at most 2k × 2k.

• If A is partitioned into four equal sized blocks,

A =

(
A11 A12

A21 A22

)
,

then A12 and A21 have rank at most k and A11 and A22 are also HODLR matrices
of rank k.

The off-diagonal low rank blocks can be compressed in the form

Aij = UV ∗, (3.43)

where U, V ∈ Cn×ℓ, and ℓ is typically the target rank that is determined by the

10

desired precision. Hence, the matrix A is approximated as

A ≈
(
A11 UV ∗

V U∗ A22

)
,

which can be viewed as a low-rank update to a block diagonal matrix:

A ≈
(
A11 0
0 A22

)
+

(
0 U
V 0

)(
U∗ 0
0 V ∗

)
. (3.44)

The inverse of A can be efficiently computed via the Woodbury matrix identity
(2.32). Since A is a HODLR matrix, the off diagonal blocks of A11, and A22 can be
compressed once again, which leads to a hierarchical compression scheme.

3.3.1 The HODLR factorization and solver

An effective way to invert a hierarchically compressed matrix is to construct a
HODLR factorization, which can be done by recursively factoring out the block
diagonals from the previous level. For example, the first level of this factorization is

A =

(
A11 A12

A21 A22

)
=

(
A11 0
0 A22

)(
I A−1

11 A12

A−1
22 A21 I

)
≈
(
A11 0
0 A22

)(
I A−1

11 UV ∗

A−1
22 V U∗ I

)
.

(3.45)

One can repeat this procedure to obtain a two-level factorization by splitting the
diagonal blocks A11 and A22 into four smaller blocks, then factoring out the four
smaller diagonal blocks. In the end, the matrix A is decomposed into a chain of
factors

A = AκAkAk−1 . . . A1, (3.46)

and the inverse of A is
A−1 = A−1

1 . . . A−1
k−1A

−1
k A−1

κ . (3.47)

In the whole process, the only matrices that need to be stored are the low-rank
factors U

(j)
i , V

(j)
i . For example, the factor A1 looks like(

I A−1
11 UV ∗

A−1
22 V U∗ I

)
.

The computation of A−1
11 , A

−1
22 require information from all the factors A2, . . . , Aκ,

but storing all of the full inverse diagonal blocks is infeasible, because they quickly
become too large. Only the low-rank factors U and V are to be stored, and the full
inverse matrices should never be formed explicitly. This is because the Woodbury
matrix identity (2.32) can be applied repeatedly only using the low-rank factors U
and V . That is, instead of forming each inverse of the diagonal blocks, one applies
the matrices occurring in the Woodbury formula to all the remaining U

(j)
i , V

(j)
i ’s in

the right locations, hence updating the low-rank matrices in the remaining factors

11

of the HODLR factorization.
Within the HODLR factorization algorithm, finding a low-rank approximation

for the off diagonal matrices in the form of equation (3.43) requires the most com-
putational work, especially because the first few levels of compression involve very
large matrices. Common techniques for compressing the off-diagonal blocks include
adaptive cross approximation (ACA) in section 1.3, and the interpolative decom-
position in section 1.2. SVD based low-rank approximation algorithms typically
scale like O(n3), which make them infeasible for large matrices. However, random-
ized versions such as the randomized approximate SVD in section 1.1, or the matrix
peeling algorithm in section 3.5 can be implemented efficiently. Also, an approximate
spectral decomposition can be obtained by computing a truncated eigenfunction ex-
pansion of the kernel function, which is discussed in section 6.3. A comparison of
such compression schemes is made section 7.

3.3.2 Computational complexity

Assuming that an O(n log n) factorization scheme is used for the compression of
the off diagonal blocks, repeating over κ ≈ log2 n levels results in an O(n log2 n)
algorithm for the HODLR factorization.

3.3.3 Computing the determinant

Suppose a HODLR factorization of C ∈ Rm×m is obtained:

C ≈ CκCκ−1 . . . C0. (3.48)

Since each factor Ci ∈ Rm×m, i = 0, . . . , κ1 is a low-rank update of the identity, the
Weinstein-Aronszajn identity in (2.42) can be used to compute the determinants of
Ki can be computed in O(n) time each, which amounts to O(κn) in total. Consid-
ering that k ∼ log2(n), the determinant computation has O(n log n) complexity.

Algorithm 3.1 is a pseudocode for computing the inverse of a HODLR factor-
ization of a Gaussian process covariance matrix, along with the log determinant.
This method is used to compute the score functions for hyperparameter MLE, the
posterior distribution, and the GP density in part II of this thesis.

3.4 Recursive skeletonization factorization (RSF)

Following the exposition of Ho & Ying [22], a recursive skeletonization factorization
(RSF) of the matrix A is of the form

A = LDU, (3.49)

where L and U are products of unit block-triangular matrices and permutation ma-
trices, and D is a block diagonal matrix. When A is symmetric positive semi-definite,
which is the case for covariance matrices, the factorization becomes a generalized
block LDL decomposition, i.e., A = LDL⊤. RSF allows fast matrix-vector multipli-
cation and inversion via sparse matrix operations. Once an RSF of A is obtained,

12

Algorithm 3.1 Applying inverse HODLR factorization to a vector
Require: p: Size of smallest diagonal block in Kκ

Require: ϵ: Precision of low-rank approximation
Require: Matrix entry evaluation routine (e.g. kernel function)
Require: training data (x,y)
1: κ← ⌊log2(n/p)⌋
2: for j = 1 to κ do
3: for i = 1 to 2j do
4: Compute low rank factorizations U j

i , V
j
i of all off diagonal blocks

5: end for
6: end for
7: Form block diagonal matrix Kκ from block diagonals of K, then apply inverse

of each block to y, and every remaining U
(l)
i or V

(l)
i (l < κ) in the right place.

8: for j = κ to 1 do
9: for i = 1 to 2j do

10: Compute inverse of i-th block in Kj via Woodbury matrix identity, and
apply to ỹ and every remaining U

(l)
i or V

(l)
i (l < j) in the right place. {ỹ is all

the previous inverse matrices applied to y}
11: end for
12: end for

it is also straightforward to compute det(A) = det(D), and the cholesky factor
R = D1/2L⊤. Hence, RSF performs the necessary tasks that are required for Gaus-
sian process regression. The types of computational tasks required for Gaussian
process regression is discussed further in section 4.2.

It is worth noting that the RSF can be formulated in a way that is mathemati-
cally equivalent to recursive skeletonization (RS) [32, 9]. The difference is that RSF
is a multiplicative factorization that relies on sparse matrix operations, whereas RS
is an additive factorization which uses the Woodbury matrix identity to compute the
inverse. The RSF is better suited for the purpose of this thesis since the multiplica-
tive format of the RSF makes it easy to compute the log determinant and square
root matrix of A. On the other hand, the RSF requires certain diagonal sub-blocks
to be invertible (which will nevertheless be the case in the experiments conducted
in this thesis), which is a somewhat stricter requirement than that of RS. RSF is
also the factorization that is used in Minden et al. [36] for Gaussian processes MLE.

Let Ω denote the set of all input data, or degrees of freedom (DOFs). Once the
data is ordered in a k-d tree format as in section 3.2, each DOF xj ∈ Ω, j = 1, . . . , N
is given an additional label s = {0, 1} denoting whether xj is in the skeleton set
(active ⇐⇒ s = 1), or in the residual set (inactive ⇐⇒ s = 0). Hence, the data
matrix X has total dimension N × (d+ 1). Let Iℓ;i denote the index set of the i-th
subdomain at level ℓ. The length of Iℓ;i is determined by the number of levels L,
which is pre-specified. More specifically in a perfect tree setting, |Iℓ;i| becomes twice
as large after each level, and in the L-th (last) level, there are two subdomains, i.e.,
IΩ = IL;1 ∪ IL;2. Hence, |Iℓ;i| = N/2(L−ℓ+1). Also define Îℓ;i to be the set of indices
corresponding to active DOFs in the i-th subdomain at level ℓ.

13

The steps of the algorithm are written out below. Unlike the HODLR factoriza-
tion in section 3.3, which proceeds from coarser levels to finer levels, RSF proceeds
from fine to coarse.
Level ℓ = 1:

In the first level, all DOFs are active, i.e., ∪iÎ1;i = Ω. For simplicity, consider a
two-level factorization of a matrix A ∈ Rn×n. Then |I1:i| = n/4. For each subdomain
I1;i, sparsity is introduced via the following steps.

First, consider the sub-block Ã := A(Ic1:1, I1:1). Using the ID in section 1.2, this
sub-block can be decomposed into

ÃP̃ = Ã1:k[I T], (3.50)

where P̃ is a permutation matrix that re-orders the DOFs in I1;1 so that the k
skeleton points come first. Let P denote the n × n permutation matrix that has
P̃ in the (I1;1, I1;1) block. After the rows and columns of Ã are sorted, consider a
block partitioning of A as in figure 3.3.

P⊤AP =

App

Ass

Aps Apr

Asr

ArrArsArp

Asp

I1;1P̃

Ic1;1

Figure 3.3: The DOFs in I1;1 are re-ordered so that the k skeleton DOFs come at
the beginning.

The s in the labels of the A sub-blocks stands for “skeleton”, and r stands for
“residual”. The goal is to eliminate the blocks Apr, Asr, Arp, and Ars using block
Gaussian elimination. Since Apr ≈ ApsT by the ID, the Apr, and Arp blocks can be
eliminated with a block-row and a block-column operation as depicted in figure 3.4.

The block-column operation matrix Q is

Q =

 I
I −T

I

 .

14

Q⊤P⊤APQ ≈

App

Ass

Aps 0

Bsr

BrrBrs0

Asp

Figure 3.4: After eliminating Apr and Arp.

The three modified blocks are

Bsr = Asr − AssT

Brs = Ars − T⊤Ass

Bss = Arr − T⊤Asr − ArsT + T⊤AssT.

Now, take the LDL decomposition of Brr, namely

Brr = LD̂L⊤. (3.51)

Note that the L here is not the same as the one in the expository equation (3.49). D̂
is a diagonal matrix. Next, the blocks Brs and Bsr are eliminated with a block-row
and a block-column operation as depicted in figure 3.5.
The block-row operation matrix S is (assuming Brr is invertible),

S =

 I
I

−L−⊤D̂−1L−1Brs L−⊤

 =

 I
I

L−⊤

 I
I

−D̂−1L−1Brs I

 .

(3.52)
The modified sub-block is

Bss = Ass −BsrB
−1
rr Brs. (3.53)

It is now clear that the advantage of using the ID for eliminating the Apr and
Arp blocks is that it leaves Aps and Asp unchanged. As the algorithm proceeds
throughout a single level, more zero rows will be introduced to Aps, and a sparsified
version of Aps can be used again in later levels.

15

S⊤Q⊤P⊤APQS ≈

App

Bss

Aps 0

0

D̂00

Asp

Figure 3.5: After eliminating Bsr and Brs. I1;1 is sparsified, and D̂ is decoupled
from the system.

The remaining sub-domains I1;i, i = 2, 3, 4 can be sparsified in the same way. If
Aps is stored, then it is important to cancel out the rows of Aps that correspond to
the residual DOFs of the following sub-domains.
Levels ℓ = 2, . . . , L:

In the proceeding levels, the process is identical, except for the fact that com-
pression occurs within the parent nodes. The decoupled DOFs no longer need to
be considered. Since only the active DOFs are used, the size of the block Bss is
different than that in level 1. For a uniformly generated 2-d data set with N = 210,
the active DOFs after each level are depicted in figure 3.6. The sparsity pattern of
the sparsified matrix after each level is depicted in figure 3.7.

The final factorization can be written succinctly as

A ≈ L̂DL̂⊤, (3.54)

where D is a block diagonal matrix that is nearly diagonal, and

L̂ =
L∏

ℓ=1

2L−ℓ+1∏
i=1

S−1
ℓ;i Q

−1
ℓ;i P

−1
ℓ;i

 . (3.55)

Note that L̂ is not necessarily lower triangular, but is a product of triangular matrices
and permutation matrices.

The block-row and block-column operation matrices Sℓ;i and Qℓ;i that occur in
each step are fast to apply via sparse multiplication, and easy to invert by negating
the off diagonal blocks. The permutation matrices are also fast to apply, and easy
to invert by simply taking the transpose. The (nearly) diagonal matrix D can be

16

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.6: A 2-d example of active DOFs after levels 1, 2, 3, 4 of RSF respectively.
Note that the remaining DOFs at each level appear to be close to the boundary of
each subdomain.

applied and inverted efficiently in O(n) operations.

3.4.1 Computational complexity and accelerating the recursive skele-
tonization factorization

Both the RSF and RS are O(n2) algorithims if implemented naively [29]. The proxy
surface compression technique in [32] accelerates the algorithm to O(n3/2). The
additive RS algorithm can be further accelerated by randomization such as in [33,
§17.3], which hasO(n) complexity, provided a fastO(n) matrix-vector multiplication
scheme such as the FMM is available.

3.4.2 Higher dimensions

For higher dimensional data, the rank of the Gram matrix is much higher than
one-dimensional data, which makes it harder to achieve accurate results using hier-
archical matrix factorizations. This is often referred to as the curse of dimensionality,
and is demonstrated in section 4.1.4. For 3-d data, the key is to compress further the
off-diagonal blocks with lower rank. Some hierarchical matrix factorizations such

17

Figure 3.7: Sparsity pattern of the near diagonal matrix after levels 1, 2, 3, 4 of
RSF respectively. Note that the off diagonal blocks can be combined into a larger
diagonal block by a single additional row and column permutation.

as the hierarchical interpolative factorization in [22] can be considered. If physical
knowledge of the data is known, and can be exploited, certain blocks can be chosen
to be highly compressed.

3.4.3 Computing the determinant

The LU factors do not contribute to the determinant, because they are products of
unit block-triangular matrices which have determinant 1, and block-diagonal matri-
ces with blocks that are unitary, hence also have determinant 1. Therefore, the de-
terminant is obtained by computing the determinant of the innermost near-diagonal
matrix D.

18

Y =

Y1

Y2

= AΩ =

A21

A11

A22

A12

Ω2

Ω10

0

Figure 3.8: The range-finding process in Level 1 of matrix peeling. The goal is to
simultaneously find the approximate bases of A12 and A21, which are Y1, and Y2

respectively.

3.5 Trace estimation via matrix peeling

As mentioned in section 3.4, additive hierarchical matrix factorizations such as re-
cursive skeletonization were not employed in this thesis to solve a system Cx = b
since they do not allow a fast computation of log det(C). However, an additive hier-
archical factorization known as the “matrix peeling algorithm” can be used instead
to estimate the trace of a matrix when the matrix can only be accessed through
matrix-vector multiplies. Trace estimation is a central task in the maximum likeli-
hood estimation of kernel hyperparameters, and will be discussed in detail in chapter
5. Here, the matrix peeling algorithm is introduced.

As the name suggests, the goal of matrix peeling is to compress off-diagonal
blocks, and subtract their effects from the original matrix to extract the diagonal
blocks. Matrix peeling can be applied to both the HODLR framework, and the
HBS framework. Here, the idea is developed using the HODLR framework. Unlike
the recursive skeletonization factorization of section 3.4, and similar to the HODLR
factorization of section 3.3, matrix peeling progresses top-down, namely, from coarse
to fine boxes.

Matrix peeling compresses the off-diagonal sibling boxes at each level simulta-
neously using a randomized low-rank approximation scheme described in 1.1, which
is from [20]. The following summary of the algorithm follows [30]. Again, a perfect
tree structure is used.
Level 1:

First, generate a random matrix Ω ∈ Rn×k, where k is the target rank plus
an oversampling parameter. Ω has zero blocks on the diagonal. Then, split a
HODLR matrix A ∈ Rn×n into quadtree sub-blocks, and multiply A to Ω to get the
approximate basis matrix Y . This procedure is depicted in figure 3.8.

Next, orthonormalize the columns of Y1, and Y2 in figure 3.8 to get the orthogonal
bases U1 and U2. These blocks are concatenated into a matrix

U =

[
0 U1

U2 0

]
. (3.56)

Let A(ℓ) denote the off-diagonal sibling sub-matrix of A at level ℓ, namely the matrix

19

A(1) ≈ UU⊤A(1) = UZ⊤ =

U2

U1

Û2

Û1

S2

S1

V ∗
2

V ∗
1

Figure 3.9: The factorization process in Level 1 of matrix peeling.

Y =

Y1

Y2

Y3

Y4

= (A− A(1))Ω =

A11 A12

A21 A22

A33 A34

A43 A44

Ω1

Ω2

Ω3

Ω4

Figure 3.10: The range-finding process in Level 2 of matrix peeling. The goal is to si-
multaneously find the approximate bases of A12, A21, A34, A43, which are Y1, Y2, Y3, Y4

respectively. Note that the gray area is suppressed by subtracting A(1) from A.

with only the off-diagonal sibling blocks that are to be compressed at level ℓ. From
the approximation

A(1) ≈ UU⊤A(1), (3.57)

compute Z = A⊤U , then take the economy-sized svd of each nonzero block of Z⊤

to obtain the factorization in 3.9.
This can be used to find an approximate rank-revealing factorization of both

off-diagonal siblings A12 and A21, namely

A(1) = ŨSV, (3.58)

where Ũ = UÛ . Hence in A−A(1), the diagonal blocks A11, and A22 are extracted,
and the off-diagonal blocks are suppressed.
Higher levels:

At level ℓ > 1, the first step is again to find the approximate basis matrices of
the off-diagonal sibling boxes {Aτ} that are not yet suppressed. Assuming ℓ = 2,
build a random matrix Ω as depicted in figure 3.10, and apply A −

∑ℓ−1
i=1 A

(i) to
Ω. The A(i), i = 1, . . . , ℓ − 1 must be subtracted from A, otherwise the matrix
Y in figure 3.10 is incorrectly altered by the effects of the parent-level off-diagonal
blocks. This means that the low-rank factors of all of the A(i)-s have to be stored,
and called every time A−

∑ℓ−1
i=1 A

(i) is applied to a matrix. Note that A(i) is never
formed explicitly inside the algorithm.

20

A(2) ≈ UZ⊤ =

U2

U1

U4

U3

Û2

Û1

Û2

Û1

S2

S1

S4

S3

V ∗
2

V ∗
1

V ∗
4

V ∗
3

Figure 3.11: The factorization process in Level 2 of matrix peeling. Note that
the low-rank factors are getting larger, but can be stored in sparse format to save
memory. Also, in practice, the factors U and V are usually much taller and narrower
than depicted in this figure.

The labeled sub-blocks of Y are orthonormalized, and the orthogonal bases
Ui, i = 1, . . . , 4 are obtained, and concatenated into a larger matrix U as in fig-
ure 3.11. Then, the off-diagonal sibling sub-matrix at level 2 can be approximated
by

A− A(1) = A(2) ≈ UU⊤(A− A(1)). (3.59)

Taking Z = (A − A(1))⊤U , and computing the economy-sized svd of each non-zero
block, A(2) can be approximated as in figure 3.11. This procedure is repeated over
incresing levels until A−

∑ℓ−1
i=1 A

(i) has diagonal blocks of prescribed size.
The sparsity pattern of A−

∑ℓ
i=1A

(ℓ) up to a threshold is plotted in figure 3.12
for demonstrative purposes.

3.5.1 Extracting the trace

After L levels of peeling, the matrix A −
∑L

i=1A
(i) will be approximately block

diagonal as depicted in figure 3.12, although A−
∑L

i=1A
(i) is not explicitly formed.

In order to extract the diagonal blocks, and hence the trace, construct a matrix
Ω ∈ Rn×m, where n is the size of the system, and m is the size of the boxes at the
leaf level. For j = 1, . . . , n/m, set each Ω((j− 1)m+1 : jm, :) sub-block of Ω as the
identity matrix of size m. Then, compute the product

D =

(
A−

L∑
i=1

A(i)

)
Ω, (3.60)

which results in the (approximate) diagonal blocks of A being placed in the sub-
blocks of D. Now, the trace can be computed recursively via

tr(A) ≈
n/m∑
j=1

tr(D((j − 1)m+ 1 : jm, :)). (3.61)

21

Figure 3.12: Sparsity pattern of A−
∑ℓ

i=1A
(i) (up to a small threshold) after levels

1,2,3,4 of HODLR matrix peeling.

3.5.2 Computational complexity

Following [30], [33], let Tmult be the cost of computing a matrix-vector multiply,
and Trand be the cost of generating a pseudorandom number from a standard Gaus-
sian distribution, and Tflop be the cost of a floating point operation. In the HBS
setting, there are O(k log n) matrix-vector multiplies, O(kn log n) random number
generations, and O(k2n log n) flops, resulting in

Ttotal ∼ Tmult × k log n+ Trand × kn log n+ Tflop × k2n log n. (3.62)

Provided there is access to a fast O(n) matrix-vector multiply scheme, the total
asymptotic cost will be O(n log n). Comparing this with the cost of randomized
compression of HBS matrices in [33, §17.3], which is O(n), matrix peeling is more
costly by a log factor, but has the advantage that it does not require the evaluation
of individual matrix entries.

22

3.6 References

Additional resources regarding hierarchical matrices include [6, 19]. Resources for
various Hierarchical matrix factorizations include [27, 47, 14, 23, 2, 51, 50, 15, 7].

23

Part II Fast Frameworks for
Gaussian processes

4 Overview of Gaussian processes

4.1 Gaussian processes for statistical inference

Consider a stochastic process

{f(x) : x ∈ X}, (4.1)

where X is an index set, which will serve the role of input space in the inference
setting. A stochastic process is Gaussian if every finite collection of the random
variables

f = (f(x1), . . . , f(xm)) (4.2)

is a multivariate Gaussian random variable. For practical applications, the entries
of the covariance matrix of f , namely Σ = cov(f , f), are assumed to be generated by
a rule

k(xi, xj) = cov(f(xi), f(xj)), (4.3)

where the function k : X × X → R that describes this rule is commonly called a
covariance function, or kernel. In general, a matrix that is generated by a kernel is
called a Gram matrix.

For the purpose of statistical inference, Gaussian processes have several advan-
tages. First, since the Gaussian is extremely well-studied, the predictive distribution
of outputs, as well as the likelihood function can be expressed analytically. Secondly,
the choice of kernel is the only assumption required to perform statistical tasks with
Gaussian processes. This means the model adapts to any type of data without
making assumptions about the true distribution of the data.

According to Rasmussen & Williams [38], there are two equivalent pathways lead-
ing to the same predictive distribution. One is the Bayesian linear model approach,
and the other is the function-modeling approach. Both approaches are summarized
below.

24

4.1.1 Bayesian linear model formulation

Consider a linear model with i.i.d. Gaussian noise that predicts the output y∗ for
test input values x∗ using training data (X, y) defined by

X := [xi, . . . , xn]
⊤ ∈ Rn×m, and y ∈ Rn. (4.4)

Namely, the model of interest is

yi = ŷi + εi, (4.5)

where
ŷi = ϕ(xi)

⊤w, and εi
i.i.d.∼ N (0, σ2). (4.6)

The vector
ϕ(xi) := [ϕ1(xi), . . . , ϕk(xi)]

⊤ (4.7)

is the set of features, or basis functions evaluated at xi. Also, the matrix of tabulated
features is denoted as

Φ(X) := [ϕ(x1), . . . , ϕ(xn)]
⊤ ∈ Rn×m. (4.8)

In ordinary least squares regression, the goal is to find the projections w that
minimize a loss function. In contrast, the Bayesian approach aims to maximize the
posterior density of w conditioned on Φ(X) and y, which is computed by Bayes’
rule:

P(w|X, y) =
P(y|X,w) P(w)

P(y|X)
. (4.9)

The Bayesian approach is directly related to Gaussian processes. In particular,
due to the i.i.d. mean zero Gaussian noise,

E[yi] = ŷi = ϕ(xi)
⊤w, Var[yi] = σ2. (4.10)

Hence, the conditional density of y in (4.9) is expressed as

P(y|X,w) =
n∏

i=1

P(yi|X,w) =
n∏

i=1

1√
2πσ

exp

(
−
(
yi − ϕ(xi)

⊤w
)2

2σ2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2
|y − Φ(X)⊤w|2

)
,

(4.11)

which is the density of N (Φ(X)⊤w, σ2I). If a zero-mean Gaussian prior is placed
on w, namely,

w ∼ N (0,Σ), (4.12)

25

then it follows from formula (4.9) that the posterior distribution of w is

P(w|X, y) ∝ P(y|X,w) P(w)

= exp

(
− 1

2σ2
|y − Φ(X)⊤w|2

)
exp

(
−1

2
w⊤Σ−1w

)
= exp

(
− 1

2σ2
(y⊤y − 2w⊤Φ(X)y)− 1

2
w⊤
(

1

σ2
Φ(X)Φ(X)⊤ + Σ−1

)
w

)
∝ exp

(
−1

2
(w − w)

(
1

σ2
Φ(X)Φ(X)⊤ + Σ−1

)
(w − w)

)
,

(4.13)

where w = 1
σ2

(
1
σ2Φ(X)Φ(X)⊤ + Σ−1

)
Φ(X)y is obtained by completing the square

in equation (4.13). Following the notation of Rasmussen & Williams [38], define

A :=
1

σ2
Φ(X)Φ(X)⊤ + Σ−1. (4.14)

Then the density in equation (4.13) gives

w|X, y ∼ N (w,A−1). (4.15)

Since the posterior is Gaussian, the posterior mean is equal to its mode, hence
the maximum a priori estimate for w is the posterior mean. Also, the maximum
likelihood estimate of the weights is obtained by maximizing P(w|X, y).

In most cases however, instead of explicitly computing an estimate of the weights
w, the primary interest is to use P (w|X, y) compute the predictive distribution,
which is the average of the outputs with respect to all possible weights:

P(y∗|x∗, X, y) =

∫
P(y∗|x∗, w) P(w|X, y) dw. (4.16)

Once again, the density is obtained by completing the square which is recognized as
the density of the Gaussian

y∗|x∗, X, y ∼ N
(

1

σ2
ϕ⊤
∗ A

−1Φy, ϕ⊤
∗ A

−1ϕ∗

)
, (4.17)

where Φ = Φ(X), and ϕ∗ = ϕ(x∗). The mean in expression (4.17) contains the term
σ−2A−1Φ, which can be written as

σ−2A−1Φ = σ−2A−1Φ(Φ⊤ΣΦ + σ2I)(Φ⊤ΣΦ + σ2I)−1

= A−1AΣΦ(Φ⊤ΣΦ + σ2I)−1

= ΣΦ(Φ⊤ΣΦ + σ2I)−1.

(4.18)

Therefore, the mean in expression (4.17) can be written as ϕ⊤
∗ ΣΦ(Φ

⊤ΣΦ+ σ2I)−1y.
Furthermore, A−1 can be computed using the Sherman-Woodbury-Morrison formula

26

in (2.32) to get
A−1 = Σ− ΣΦ(σ2I + Φ⊤ΣΦ)−1Φ⊤Σ. (4.19)

Plugging this into the variance term, expression (4.17) becomes

y∗|x∗, X, y ∼ N (ϕ⊤
∗ ΣΦ(Φ

⊤ΣΦ + σ2I)−1y,

ϕ⊤
∗ Σϕ∗ − ϕ⊤

∗ ΣΦ(σ
2I + Φ⊤ΣΦ)−1Φ⊤Σϕ∗).

(4.20)

This form shows that the features only enter the expression (4.20) through Φ⊤ΣΦ, ϕ⊤
∗ ΣΦ,

or ϕ⊤
∗ Σϕ∗, which alludes to the significance of the matrix function ϕ(x)⊤Σϕ(x′).

4.1.2 Function space formulation

Alternatively, the predictive distribution of y∗ can be constructed by directly viewing
y∗ as a realization of a random vector f∗ from a Gaussian process. If one first specifies
a kernel of the Gaussian process, a predictive distribution of f∗ is obtained by directly
computing the conditional distribution of f∗ on the training points and test input
without any reference to weights or parameters. In Rasmussen & Williams [38], this
approach is referred to as the “function-space view”, since it aims to directly construct
the distribution of the random function, rather than estimate the parameters of an
underlying model.

In this approach, a kernel k(x, x′) = cov(f(x), f(x′)) is specified, and given a
dataset (y,X), the the covariance matrix of the observed data is denoted as

cov(y, y) = σ2I +K(X,X), (4.21)

where σ is the standard deviation of white Gaussian noise. It is worth noting that
the covariance of a pair of output values is determined by the input values.

Denoting the test input as X∗ and the target random vector as f∗, consider the
joint distribution of y and f∗, namely[

y
f∗

]
∼ N

([
0
0

]
,

[
σ2I +K K∗

K⊤
∗ K∗∗

])
, (4.22)

where K := K(X,X), K∗ := K(X,X∗), and K∗∗ := K(X∗, X∗). The prior mean
functions need not be zero, but is set to zero for convenience. Incorporating nonzero
mean functions is straightforward, as seen in Rasmussen & Williams [38, §2.7].

The distribution of y∗|x∗, X, y, i.e., the predictive (conditional) distribution,
which is computed using the block-wise inversion lemma in section 2.1 is

f∗|x∗, X, y ∼ N (K⊤
∗ (K + σ2I)−1y,

K∗∗ −K⊤
∗ (K + σ2I)−1K∗).

(4.23)

Comparing the expressions (4.20) and (4.23), it is clear that the function space
approach and the linear model approach are equivalent if

k(x, x′) = ϕ(x)⊤Σϕ(x′). (4.24)

27

This motivates the relationship between the kernel k(x, x′) and the matrix func-
tion ϕ(x)Σϕ(x′), which is sometimes called the equivalent kernel. The relationship
between basis functions and kernels is further explored in section 6.3.

4.1.3 Hyperparameter maximum likelihood estimation

Another important task is finding the optimal hyperparameters of the kernel. While
it is sometimes adequate to choose the hyperparameters based on physical knowledge
of the underlying model, most of the time the hyperparameters must be learned
using the given data. This task is commonly performed using a maximum likelihood
framework.

Given a kernel k(x1, x2; θ), where θ is the vector of hyperparametrs, and a vector
of observations y that is from a random vector f ∼ N (0, C = K+σ2I), the marginal
log-likelihood is shown in [38] to be

ℓ(θ) := log P(y|θ) = −1

2
y⊤C−1y − 1

2
log |C| − n

2
log 2π. (4.25)

In order use a first-order optimization routine, the gradient of the log-likelihood is
also required. Each component of the gradient g(θ) ∈ Rp is computed analytically
by

gi(θ) :=
∂ℓ(θ)

∂θi
=

1

2
y⊤C−1CiC

−1y − 1

2
tr(C−1Ci), (4.26)

using the identities
∂

∂θi
C−1 = −C−1∂C

∂θi
C−1, (4.27)

and
∂

∂θi
log |C| = tr

(
K−1∂K

∂θ

)
, if C is positive definite. (4.28)

The equations gi(θ) = 0 are often referred to as score equations.

4.1.4 Kernels, Gram matrices, and the curse of dimensionality

The construction of the posterior density in section 4.1.2 alludes to the fact that a
Gaussian process is completely described by a kernel, and a mean function.

Kernels that solely depend on τ := x − x′ are called stationary kernels. Quali-
tatively, a stationary kernel represents the assumed similarity of outputs for input
data based on how “close” they are, where the notion of closeness is determined by
∥τ∥. If x and x′ enter only through r := ∥τ∥2 = ∥x − x′∥2, where ∥ · ∥2 is the
Euclidean norm, then the kernel is called isotropic. For stationary kernels that are
sufficiently smooth, the resulting Gram matrix is often highly low-rank.

Another advantage of using a stationary kernel is that it leads to a separable
Gram matrix.

There are also kernels that are not stationary. For example, the feature space
construction of the posterior distribution in equation (4.20) leads to the kernel
k(x, x′) = ϕ(x)⊤Σϕ(x′). Defining Φ ∈ Rn×m to be the matrix of m features evaluated

28

at n points, then the resulting Gram matrix becomes

K = (Σ
1
2Φ)⊤(Σ

1
2Φ).

Since Σ
1
2Φ ∈ Rn×m, the rank of this Gram matrix is at most m.

Also, the family of piecewise polynomial kernels with compact support often
gives rise to a sparse Gram matrix, for which efficient sparse linear algebra routines
can be used.

A kernel k : X × X → C is a valid covariance function if it is a function which
is positive semidefinite, i.e.,∫

k(x,x′)f(x)f(x′) dµ(x) dµ(x′) ≥ 0

for all f ∈ L2(X , µ). Hence, a Gram matrix corresponding to a covariance matrix
is also positive semidefinite.

A detailed list of covariance functions commonly used for statistical inference
and their properties are included in [38, §4].

Hierarchical compression schemes are effective for the Gram matrices that arise
from the following families of covariance functions. Note that for other covariance
functions such as dot product kernels, or compactly-supported kernels, there exists
other efficient methods to facilitate computation, especially when the matrix is fully
separable, or sparse.

Below is a very brief list of commonly used isotropic kernels. Here, r = ∥x−x′∥2
invariably.

• The squared exponential kernel (also known as the radial basis function kernel)

→ k(r) = exp

(
− r2

2ℓ2

)
→ Hyperparameters: ℓ (characteristic length-scale)

• The Matérn kernel

→ k(r) =
1

2ν−1Γ(ν)

(√
2ν

ℓ
r

)ν

Kν

(√
2ν

ℓ
r

)
, where Kν(z) is the modified Bessel

function of the second kind.
→ Hyperparameters: ν, ℓ > 0

• The exponential kernel

→ k(r) = exp
(
−r

ℓ

)
→ Hyperparameters: ℓ

• The rational quadratic kernel

→ k(r) =

(
1 +

r2

2αℓ2

)−α

29

Figure 4.1: The spectral decay of 1024 × 1024 Gram matrices generated by the
squared exponential kernel (ℓ = 1), exponential kernel (ℓ = 1), and the Matérn
kernel (ℓ = 1, ν = 5/2) as the dimension of the data increases from 1 to 4.

→ Hyperparameters: ℓ, α

• The inverse multiquadratic kernel

→ k(r) =
1√

1 + r2
(This is a special case of the rational quadratic kernel with

parameters ℓ = 1, α = 1/2).

• The biharmonic kernel

→ k(r) = r2 log |r|

Figure 4.1 displays the spectral decay of Gram matrices arising from a few dif-
ferent kernels as the dimension increases. It is worth noting that the squared expo-

30

I +K
103×103

=

B

Figure 4.2: A 1000× 1000 Gram matrix K generated by evaluating k(x, x′) at 1000
uniformly drawn points from the interval [−0.5, 0.5]. Table 4.1 compares the rank
growth of the 500× 500 off-diagonal block B for increasing d.

d 1 2 3 4 5
squared exponential (ℓ = 1) 7 41 178 466 500

exponential (ℓ = 1) 1 162 422 500 500
Matérn (ν = 5/2, ℓ = 1) 3 177 390 500 500

Table 4.1: The rank growth of the 500 × 500 off-diagonal block B in figure 4.2 for
increasing d. The rank was computed using Matlab’s rank function.

nential kernel shows very rapid spectral decay for d = 1, and is moderately rapid
even for dimension d = 2. Although not included in figure 4.1, the Gram matrix
associated with the rational quadratic kernel has similar spectral decay pattern as
the squared exponential kernel. The Matérn kernel seems to be heavily affected by
growth of dimension. The spectrum of the exponential kernel does not decay much,
but is interestingly not affected much by growth of dimension. Figure 4.2 and table
4.1 below demonstrate the curse of dimensionality in terms of the rank growth of
the blocks of the Gram matrix.

Since hierarchical solvers rely on the low-rankness of off-diagonal blocks, the in-
crease in dimension makes it increasingly difficult to apply a hierarchical solver. For
high dimensional problems, which is mostly of interest in data science applications,
a more advanced hierarchical compression scheme is required. Alternatively, one
might consider using a iterative solver, or an analytical technique based on comput-
ing a series approximation of the kernel. More details on different approaches are
included in section 4.2. A deeper analysis of the eigenvalues and eigenfunctions of
kernels, and approximation techniques are covered in section 6.3.

4.2 Survey of fast algorithms for Gaussian processes

The predictive distribution of Gaussian process models in equation (4.23) is easy
to express analytically, but involves inverting an n × n dense matrix, which is a
major computational bottleneck costing O(n3) floating point operations. This calls
for an efficient way to compute (4.17) for large data. Another computation-heavy
task is computing the Gaussian process log-likelihood (4.25) and its gradient (4.26)
to compute the maximum likelihood estimates of the kernel hyperparameters. The
computational challenges that occur for these tasks can be summarized as the fol-
lowing:

31

• Inverting the covariance matrix C = σ2I +K.

• When the exact Cholesky factor of C cannot be computed due to computational
constraints, finding an approximate Cholesky factor R of C, i.e., C ≈ R⊤R, can
also greatly help compute terms of the form y⊤C−1y and y⊤C−1CiC

−1y, where
the former appears in the posterior density function of f∗, and also the marginal
log-likelihood function (4.25), and the latter appears in the score function (4.26).

• Computing the log determinant of C, which appears in the posterior density of
f∗, and also the marginal log-likelihood function (4.25).

• Computing tr(C−1Ci), from the gradient of the log-likelihood (4.26).

Several themes to efficiently handle these computations for large datasets are
introduced in the following subsections.

4.2.1 Hierarchical matrix factorizations

For many commonly used kernels, the associated covariance matrix C = σ2I +
K has a hierarchical rank structure, whose definition is introduced in chapter 3.
Qualitatively, the kernel represents a physical relationship between the input data.

Techniques to rapidly invert, or compute products of large, dense hierarchical
matrices were actively developed for the purpose of solving PDEs arising in compu-
tational physics and engineering applications. In the past decade, these techniques
involving hierarchical matrices started being used for statistical inference. In par-
ticular, kernel methods benefit from such techniques, since matrices that arise from
kernels often have hierarchical rank structure.

Ambikasaran et al. [3] use a hierarchical off diagonal low rank (HODLR) factor-
ization to compute the predictive distribution (4.23), and also introduces a method
to compute the log determinant of the covariance matrix using the resulting hi-
erarchical factorization. Minden et al. [36] tackle the problem of finding the best
fit kernel hyperparameters by computing the log-likelihood and its gradient using
a recursive skeletonization factorization, and matrix peeling for weakly-admissable
matrices. Geoga et al. [13] use a HODLR factorization approach for the same task.
Williams & Seeger [48] use the Nyström method to compress off diagonal blocks for
similar tasks in various kernel methods.

A major advantage of this approach is that once a hierarchical matrix factoriza-
tion is obtained, it can also be used to compute the determinant of the covariance
matrix as well [3]. That is, prediction, density estimation, and model training can
be performed together once a factorization is computed. In addition, a hierarchi-
cal matrix factorization can be used repeatedly in the case where testing has to be
performed sequentially.

On the other hand, this approach becomes slower when the the Gram matrix
is not sufficiently low-rank, which is often the case when dealing with Gaussian
processes models of high dimension [36].

32

4.2.2 Analytic techniques

By expressing a Gaussian process using basis functions, it is also possible to obtain
a low-rank approximation of the Gram matrix. Once a low-rank approximation of
the form K ≈ UDU⊤ is obtained (which is always possible since K is symmetric),
it is straightforward to compute the inverse of C = K + In via

[UDU∗ + In]
−1 = [UDU∗ + UIrU

∗]−1

= U [D + Ir]
−1U∗.

(4.29)

Since D+ Ir is a r× r diagonal matrix, the computation of its inverse only requires
O(r) floating point operations.

In order to obtain a low-rank approximation of the Gram matrix, Greengard &
O’Neil [17] use the Karhunen-Loéve expansion of the Gaussian process. Greengard
[16] further introduces methods to use Fourier series to approximate a Gaussian
process. The Nyström method is used in Williams & Seeger [48]. Ambikasaran
[1] introduces methods using Taylor series, multipole expansions, and interpolation
techniques.

Analytical methods are typically very fast when the required length of the sum
is short. However, such methods suffer from the curse of dimensionality, and also
introduce a truncation error along with approximation error. The accuracy and
error properties of analytical methods are explored in section 6.3.

4.2.3 Iterative methods

The computation-heavy term in the predictive distribution (4.23), namely C−1y,
can be computed by solving a system of equations involving the matrix C. Since
C is a symmetric positive semidefinite matrix, a Cholesky solver is suitable for
small models. However, the Cholesky factorization requires O(n3) floating point
operations, which is infeasible for larger problems, setting aside memory issues.
Instead, a preconditioned conjugate gradient solver is adequate for large symmetric
positive semidefinite systems of equations, which is demonstrated in Wang et al. [46].

The biggest advantage of using an iterative solver such as the conjugate gradient
method is that it is highly parallelizable, and does not depend on the rank structure
of C, although the result will be affected by the conditioning of C.

However, this approach does not facilitate the computation of the determinant of
C. Hence log |C| in the log-likelihood function (4.25) typically needs to be computed
by an approximate method.

4.2.4 Approximate methods

Aside from the approaches listed above, many approximation methods for Gaussian
process models have also been introduced. While the previously mentioned methods
also require some form of approximation, they still utilize the whole dataset, and the
error can be controlled to high precision. By contrast, the methods in this category
make an approximation by selecting a subset of the data. For instance, stochastic

33

methods are used to evaluate the log-likelihood in [43]. A matrix-free approach to
computing the score equations (4.26) based on the Hutchinson trace estimator [24]
is introduced in [4]. There is also a large literature on covariance tapering, e.g., [25],
which is a method that aims to introduce sparsity in the covariance matrix.

In many instances, techniques originating from the deep learning literature have
also been applied to large-scale Gaussian processes. For example, an interpolative
decomposition is used to sample a covariance matrix in [12], a stochastic variational
optimzation method is used to train a GP model in [8], and a mixture of experts
technique is used in [10].

Also, in the case of Gaussian process classification, the resulting likelihood is
non-Gaussian. Hence, it is unavoidable to approximate the integrals arising in the
posterior computation. A Laplace approximation, e.g., in [39], aims to approximate
the posterior density with that of a Gaussian. Other popular approaches to approx-
imate the posterior density include expectation propagation (EP) [26], and Markov
chain Monte Carlo (MCMC) [21]. A comparison of approximation methods for GP
classification is in [37].

5 Fitting kernel hyperparameters

Many kernels have several associated parameters aside from the input, which can be
interpreted as conveying physical information of the underlying problem. These pa-
rameters, which are often called hyperparameters, sometimes have to be estimated
from the data using, e.g., a maximum likelihood framework with a first order op-
timization routine as in [36]. In Matlab, fminunc (unconstrained optimization) or
fmincon (constrained optimization) are routines that can be used for this purpose.

5.1 Evaluating the marginal log-likelihood and its gradient

As was seen in section 4.1.3, the Gaussian marginal log-likelihood for the hyperpa-
rameters can be written as

ℓ(θ) := log P(y|θ) = −1

2
y⊤C−1y − 1

2
log |C| − n

2
log 2π. (5.30)

The first term −1

2
y⊤C−1y can be computed using a hierarchical solver such as the

ones discussed in section 3. C−1 can be directly applied to y, or if a matrix R that
satisfies C ≈ R⊤R can be computed efficiently, then computing (R−1y)⊤(R−1y)
can save time. It is worth noting that the HODLR factorization does not support
computing the square root matrix, whereas the RSF automatically provides the
square root matrix R.

Computing log |C| is supported by both the HODLR factorization, and RSF as
mentioned in section 3.

34

The gradient of the marginal log-likelihood is stated again below.

gi(θ) :=
∂ℓ(θ)

∂θi
=

1

2
y⊤C−1CiC

−1y − 1

2
tr(C−1Ci). (5.31)

The matrix derivative Ci =
∂C

∂θi
can be computed analytically for most kernels,

and can be implemented easily. For example, for the squared exponential kernel

k(r; ℓ) = exp

(
− r2

2ℓ2

)
, (5.32)

the derivative with respect to ℓ is

∂k(r; ℓ)

∂ℓ
=

r2

ℓ3
exp

(
− r2

2ℓ2

)
. (5.33)

Furthermore, if the square-root matrix R of Ci can be computed efficiently, then
the first term in (5.31) can be computed via (RC−1y)⊤RC−1y. For the second term

−1

2
tr(C−1Ci), first, C−1Ci can be computed using one of the hierarchical solvers,

then the trace is estimated using matrix peeling.

5.1.1 Trace estimation

The problem of estimating tr(T (A)), where T (A) ∈ Rm×m is typically a black-box
transformation of the matrix A, is a central problem not only in Gaussian process
MLE, but also in topics such as spectral density computation, and log-determinant
computation etc.

A popular approach for trace estimation is using Hutchinson’s estimator [24]

trHn(A) :=
1

n

n∑
i=1

z⊤i Azi, (5.34)

where zi ∈ Rm is a random vector containing iid zero mean, unit variance sub-
Gaussian entries. This estimator is based on the observation that if z has iid zero
mean and unit variance entries,

E(z⊤Az) = E(tr(z⊤Az)) = E(tr(Azz⊤)) = tr(AE(zz⊤)) = tr(A). (5.35)

For example, the original Hutchinson’s estimator was based on zi ∼ {−1, 1}m, and
zi ∼ N (0, Im) also performs similarly. Results in [40], [5] show that for zi with sub-
Gaussian entries, and A a positive semidefinite matrix, the required n to achieve

(1− ε) tr(A) ≤ trHn(A) ≤ (1 + ε) tr(A) with probability ≥ 1− δ (5.36)

is n = O(log(1/δ)/ε2). A recent research [35] introduces an improved estimator that
has the same error bound with n = O(

√
log(1/δ)/ε+ log(1/δ)).

35

A detailed comparison of the Hutchinson’s estimator and the estimator based on
matrix peeling is in [36].

5.2 Numerical results

The following experiments contain results produced by the matrix peeling algorithm
with a naive O(n2) dense matrix-vector multiply scheme. Note that in the presence
of an O(n) fast multiplication scheme, or advanced computing resources, the com-
plexity of matrix peeling can be improved to O(n log n) as discussed in section 3.5.2.

The error is measured in the difference between the extracted trace and the true
trace when it is available. Note that without direct access to individual matrix
entries, the exact trace can only be accessed as long as the matrix can be stored.

d n Peel Extract Levels k + ℓ error
1 162 5.9922e-02 2.4161e-02 2 12 2.8422e-14

322 7.6296e-01 1.0228e-01 4 13 1.1369e-13
642 1.3508e+01 8.1723e-01 6 15 3.6380e-12
1282 2.9173e+02 1.3940e+01 8 15 1.1823e-10
2562 5.4608e+03 2.3633e+02 10 15

2 162 1.3363e-01 3.9090e-02 2 40 9.8681e-07
322 2.8777e+00 2.7884e-01 4 40 1.7097e-04
642 6.0081e+01 3.1813e+00 6 40 5.2320e-03
1282 1.1674e+03 4.8886e+01 8 40 4.4444e-03

Table 5.2: Run-time in seconds and error for computing the trace using matrix
peeling

d n Iterations Optimal ℓ ∥∇f∥
1 162 23 526.5503 5.3819e-06

322 23 698.4499 9.9684e-06

Table 5.3: Number of iterations and value of estimated hyperparameter of the RBF
kernel (characteristic length-scale ℓ) learned from the data using Matlab’s fminunc.
The data was generated uniformly on the interval [−3, 3]. The initial point x0 was
set to 1 for all cases.

6 Prediction

Once the kernel hyperparameters are learned from the data, the kernel can be used
to compute the posterior distribution of the test outputs f ∗ (4.23), which is repeated
once again:

f∗|x∗, X, y ∼ N (K⊤
∗ (K + σ2I)−1y,

K∗∗ −K⊤
∗ (K + σ2I)−1K∗).

(6.37)

36

6.1 Direct randomized approximate spectral decomposition
approach

Using the randomized approximate svd in section 1.1, the Gram matrix can be
directly compressed in the form

K ≈ UDU⊤. (6.38)

Using this, the task of computing (K + I)−1 can be written as

(UDU⊤ + In)
−1 = (UDU⊤ + UIrU

∗)−1

= U(D + Ir)
−1U⊤.

(6.39)

Since D+ Ir is a r× r diagonal matrix, the computation of its inverse is particularly
simple.

The main computational challenge is the range-finding stage of the randomized
svd mentioned in 1.1.1. The matrix-vector multiplications involving the matrix K is
O(mn) if implemented naively, and quickly becomes slow. However, as mentioned in
section 1.1.4, a fast matrix-multiply routine reduces the algorithm to beO(k2(m+n))
which is feasible for extremely large matrices.

6.1.1 Numerical results

The error is measured by the quality of the matrix factorization, namely ∥Cv −
UDU⊤v∥/∥Cv∥, where v is a uniformly generated random vector with unit norm.
This is a proxy for ∥C−UDU⊤∥/∥C∥. When n is large, it may also take a long time
to compute Cv on a standard laptop. In this case, a random subset of the rows of C
(1000 rows for all of the experiments henceforth) were chosen to compute the error.
In the tables below, k + ℓ denotes the target rank k plus oversamling parameter p.

Table 6.4 shows the run time and errors for the simple randomized eigenvalue
decomposition approach with the squared exponential (RBF) kernel.

Table 6.9 shows the run time and errors for the same method with the Matérn
kernel. Information about the dimension, and hyperparameters are provided in each
of the tables.

6.2 Hierarchical matrix factorization approach

6.2.1 HODLR factorization

The HODLR factorization of the covariance matrix K(X,X) can be rapidly applied
to a vector as discussed in section 3.3. Typically, the factorization is computed
in the training phase, that is, while computing the log-likelihood function. Thus,
this factorization can be used again to compute the posterior mean and variance.
The timing and error associated with computing the HODLR factorization and the
posterior distribution is in section 6.2.3. The error is measured by the quality of
the factorization, i.e., ∥Cv−CHv∥/∥Cv∥, where v is a uniformly generated random
vector of norm 1, and CH is the HODLR factorization of C.

37

d ℓ n Stage A Stage B Invert k + p error
1 1 162 8.1414e-03 2.2306e-03 1.3758e-03 25 1.9952e-15

322 5.5106e-02 7.2160e-04 3.6370e-04 25 1.9757e-14
642 6.5045e-01 2.0360e-03 8.0130e-04 25 2.4012e-15
1282 9.5247e+00 4.6957e-03 1.8185e-03 25 6.5651e-15
2562 1.8059e+02 1.5815e-02 6.0505e-03 25 6.6119e-14
5122 2.6207e+03 4.8991e-02 2.8392e-02 25 8.5077e-14

2 1 162 2.6988e-02 2.6023e-03 2.3066e-03 100 2.2769e-05
322 2.8729e-01 4.2543e-03 1.6171e-03 100 2.6345e-05
642 3.8938e+00 7.6879e-03 3.5396e-03 100 2.6142e-05
1282 6.1767e+01 2.4406e-02 3.9177e-03 100 2.3383e-05
2562 7.1336e+02 1.1855e-01 1.5985e-02 100 3.8602e-05

Table 6.4: Run-time in seconds and error for computing posterior mean and variance
using an eigenvalue decompositian via randomized SVD with squared exponential
kernel.

d ℓ ν n Stage A Stage B Invert k + p error
1 1 5/2 162 5.7703e-02 2.6156e-03 1.3291e-03 45 O(10−6)

322 3.7997e-01 5.8160e-04 5.2900e-04 45 O(10−6)
642 5.6499e+00 1.0727e-03 7.6910e-04 45 O(10−6)
1282 8.3203e+01 4.3308e-03 1.8921e-03 45 O(10−6)
2562 1.2734e+03 2.2246e-02 1.0639e-02 45 O(10−6)

Table 6.5: Run-time in seconds and error for computing posterior mean and variance
using an eigenvalue decompositian via randomized SVD with Matérn kernel

6.2.2 Recursive skeletonization factorization

In the case of the RSF in section 3.4, the inverse factors can be formed directly
during construction. Once the factorization is computed, the factors can be applied
rapidly to a vector, hence can be used to compute the posterior distribution (6.37).
The error is measured by the quality of the factorization, i.e., ∥Cv − CRv∥/∥Cv∥,
where v is a uniform random vector of norm 1, and CR is the RSF of C.

6.2.3 Numerical results

Tables 6.6 and 6.7 show the run time and errors of the HODLR factorization with
the RBF kernel, and Matérn kernel respectively. Tables 6.8 and 6.9 show the run
time and errors of the recursive skeletonization factorization with the RBF kernel,
and Matérn kernel respectively.

38

d ℓ n Compress Invert k + p error
1 1 162 8.9363e-03 3.0572e-02 25 1.2808e-14

322 6.4223e-02 1.1576e-01 25 2.9497e-15
642 5.7460e-01 4.8035e-01 25 1.8343e-14
1282 7.4567e+00 2.1527e+00 25 2.3054e-14
2562 1.1956e+02 1.0847e+01 25 1.8229e-14
5122 5.8185e+02 2.9443e+01 25
10242 2.8447e+03 1.5031e+01 25

2 1 162 9.0642e-03 1.1023e-01 35 6.8502e-05
322 2.2445e-01 4.2361e-01 35 7.3941e-05
642 3.2993e+00 1.7309e+00 35 1.0155e-04
1282 4.4982e+01 7.1992e+00 35 8.3263e-05
2562 6.1788e+02 3.0609e+01 35 9.7801e-05

Table 6.6: Run-time in seconds and error for computing posterior mean and variance
using HODLR factorization with squared exponential kernel. Compared to the
simple low rank approximation scheme in Table 6.4, the target rank required for a
similar level of precision is much lower for HODLR when d = 2, which shows it is a
more efficient compression scheme.

d ℓ ν n Compress Invert k + p error
1 1 5/2 162 6.3903e-02 9.7910e-02 45 O(10−5)

322 7.0262e-01 4.0214e-01 45 O(10−5)
642 6.3467e+00 1.6789e+00 45 O(10−5)
1282 9.2876e+01 5.9213e+00 45 O(10−5)
2562 1.2750e+03 2.4691e+01 45 O(10−5)
5122 5.3009e+03 1.1646e+02 45 O(10−5)

Table 6.7: Run-time in seconds and error for computing posterior mean and variance
using HODLR factorization with Matérn kernel

6.3 Analytical techniques for low-rank approximations

6.3.1 Computing the Karhunen-Loéve expansion of a GP

Another approach to finding a global low-rank approximation of K involves com-
puting a low-order eigenfunction expansion of the integral operator K : L2[−1, 1]→
L2[−1, 1] defined by

Kf(x) =
∫ 1

−1

k(x, x′)f(x′)dx′. (6.40)

The interval [−1, 1] was chosen to make use of the canonical Gauss-Legendre quadra-
ture nodes and weights, but the Gauss nodes can be scaled to incorporate any in-
terval, for example [−3, 3], which is used for the experiments in section 7. Further-
more, one could generalize this operator to be on square integrable functions on a
d-dimensional region D. If u(x) is an eigenfunction of K, and λ is the corresponding

39

d ℓ n Compress Apply |Iskel| Levels error
1 1 162 3.3735e-01 1.0284e-02 14 4 1.2316e-14

322 5.6943e-01 2.0169e-02 14 4 7.4032e-14
642 4.0954e+00 4.4472e-02 14 4 4.1333e-13
1282 1.8186e+02 4.5395e-01 15 4 4.8133e-12

2 1 162 9.9356e-02 8.6903e-03 45 2 4.5443e-05
322 4.4229e-01 1.6060e-02 35 2 4.9252e-04
642 8.7825e+00 4.8234e-02 55 4 3.9443e-04
1282 2.1939e+02 4.6907e-01 55 4 6.8105e-04

Table 6.8: Run-time in seconds and error for computing posterior mean and variance
using recursive skeletonization factorization (RSF) with squared exponential kernel.

d ℓ ν n Compress Apply |Iskel| Levels error
1 1 5/2 162 1.3534e-01 1.2311e-02 25 2 5.0860e-15

322 7.3018e-01 1.5903e-02 25 2 3.0533e-14
642 9.9857e+00 4.1975e-02 25 4 5.6823e-14
1282 2.2908e+02 4.0900e-01 25 4 1.8010e-13

Table 6.9: Run-time in seconds and error for computing posterior mean and variance
using recursive skeletonization factorization (RSF) with Matérn kernel

eigenvalue, then

λu(x) = Ku(x) =
∫ 1

−1

k(x, x′)u(x′)dx′. (6.41)

The key observation in [17] is that if f is a zero mean Gaussian process on D
with covariance function k, then any order-m approximation

f̂(x) =
m∑
i=1

αigi(x), (6.42)

where αi ∼ N (0, 1), has covariance function

k̂(x, x′) = E[f̂(x)f̂(x′)]

= E

[(
m∑
i=1

αigi(x)

)(
m∑
i=1

αigi(x
′)

)]

=
m∑

i,j=1

gi(x)gj(x
′)E[αiαj]

=
m∑
i=1

gi(x)gi(x
′).

(6.43)

Moreover, it is shown in [44] that if the gi(x)’s are chosen to be the basis functions of
the Karhunen-Loéve (KL) expansion, namely φi(x) :=

√
λiui(x), where the ui(x)’s

are the normalized eigenfunctions of K corresponding to the eigenvalues λi’s, which

40

Algorithm 6.2 Computing the KL-expansion
1: Form n × n discretization matrix A defined by Ai,j =

√
wiwjk(xi, xj), where

xi, wi’s are the order-r Gauss nodes and weights.
2: Compute eigenvalue decomposition of A: A = UDU∗. The eigenvalues are on

the diagonals of D
3: Scale the rows of U to form matrix of eigenfunctions evaluated at Gaussian

nodes: Ûi,: = Ui,:/
√
wi.

4: Use length-r Legendre polynomial approximation to find the eigenfunctions
based on the columns of Û . Store the coefficients of the Legendre approxima-
tion in matrix A = MÛ , where M is the matrix that transforms the evaluated
function values into the coefficients.

5: The eigenfunctions are ui(x) =
∑r

j=1 Aj,iPj−1(x) on x ∈ [−1, 1], where Pj(x) is
the j-th order Legendre polynomial.

6: Set φi(x) =
√
λiui(x).

are in decreasing order, then the covariance function k̂ of f̂ is the best approximation
of the covariance function k of f in the L2 norm. Mercer’s theorem stated in e.g.,
[17] guarantees that

r∑
i=1

φi(x)φi(x
′)→ k(x, x′) (6.44)

absolutely, and uniformly.
There are standard methods of finding the eigenvalues and eigenfunctions of K,

which involve a discretization matrix A that is obtained by discretizing K at the r-th
order Gaussian nodes. Then, the eigenvalues of A are the first r eigenvalues of K,
and the eigenvectors of A are viewed as the eigenfunctions evaluated at each of the
Gaussian nodes. A straightforward implementation is introduced in [17, Algorithm
1], which is summarized in algorithm 6.3.1.

This is an O(nr2) algorithm on the interval, so it scales linearly with the system
size. However, one must be aware of the additional error added in the discretization
process, as well as the truncation error, which can be observed in section 6.3.3.

6.3.2 GP regression via KL-expansion

Once the order-m KL basis functions (φi(x))i=1,...,m are obtained, these can be used
to form a low-rank approximation of the Gram matrix K. By (6.44), each entry in
K can be approximated in the form

k(x, x′) ≈
r∑

i=1

φi(x)φi(x
′). (6.45)

Defining X := (φj(xi))ij, then XX∗ is a natural low-rank approximation of K, since
each entry of XX∗ is precisely the right hand side of (6.45). Hence, [I + K]−1 is
approximated by

[I +XX∗]−1. (6.46)

41

d ℓ n KL-expand Factor & invert Length error
1 1 162 9.7901e-01 8.3340e-02 25 3.2629e-11

322 9.1814e-01 2.9757e-01 25 2.6403e-11
642 8.7289e-01 1.1964e+00 25 2.3411e-11
1282 9.3278e-01 4.8108e+00 25 8.9366e-12
2562 9.1487e-01 2.0758e+01 25 6.1369e-12
5122 9.2822e-01 7.7226e+01 25 4.1503e-12
10242 8.9800e-01 3.3264e+02 25 4.5741e-12

Table 6.10: Run-time in seconds and error for computing posterior mean and vari-
ance using KL-expansion based eigenvalue decomposition with squared exponential
kernel

d ℓ ν n KL-expand Factor & invert Length error
1 1 5/2 162 9.7533e-01 8.5563e-02 35 O(10−6)

322 8.7543e-01 3.1758e-01 35 O(10−6)
642 8.7446e-01 1.1730e+00 35 O(10−6)
1282 1.0709e+00 4.9095e+00 35 O(10−6)
2562 1.8818e+00 2.4444e+02 35 O(10−6)
5122 1.6100e+00 1.0019e+03 35 O(10−6)

Table 6.11: Run-time in seconds and error for computing posterior mean and vari-
ance using KL-expansion based eigenvalue decomposition with Matérn kernel

By computing the svd X = UDV ∗, then (6.46) can be written as

[I + UD2U∗]−1. (6.47)

One can apply the same technique used in (6.39) to compute the inverse quickly via

U [Ir +D2]−1U∗. (6.48)

6.3.3 Numerical results

Here, the error is measured by ∥Kv − XX⊤v∥/∥K∥, where v is again a uniformly
generated random vector with unit norm, and the low-rank factor X is computed
using the KL-expansion method described in section 6.3.2.

Tables 6.10 and 6.11 show the run time and error for the low-rank approximation
obtained by the KL-expansion approach with the RBF kernel, and Matérn kernel
respectively.

7 Results

The following plots demonstrate the effect of the hyperparameters on the variance
of the Gaussian process with the squared exponential kernel (RBF kernel), and the
Matérn kernel.

42

Figure 7.3: HODLR factorization is used to compute the posterior distribution of
the Gaussian process with noise ε ∼ N (0, 0.01), and the squared exponential (RBF)
kernel. The posterior mean is the line in blue, and the gray area represents the
pointwise 95 percent confidence interval of the test output. The increased charac-
teristic length-scale parameter appears to smooth the variance.

Figure 7.4: HODLR factorization is used to compute the posterior distribution of the
Gaussian process with noise ε ∼ N (0, 0.01), and the Matérn kernel. The posterior
mean is the line in blue, and the gray area represents the pointwise 95 percent
confidence interval of the test output. The increased parameter ν also appears to
smooth the variance.

43

Figure 7.5: HODLR factorization is used to compute the posterior mean of the 2-
d input Gaussian process with noise ε ∼ N (0, 0.01), and the squared exponential
(RBF) kernel. The 4096×2 data matrix was drawn uniformly from [−3, 3]× [−3, 3].
In the plot on the left, the kernel has characteristic length-scale ℓ = 2, and in the
right plot, ℓ = 4. The increased parameter ℓ appears to smooth out the mean
function.

8 Conclusion

The HODLR framework and the recursive skeletonization factorization both effi-
ciently compress kernel matrices from 1-d and 2-d data. The simple randomized
spectral decomposition scheme for the whole matrix C is efficient in 1-d, but is less
effective for 2-d data and higher, due to the unsophisticated compression method.

The KL-expansion based low-rank decomposition is the fastest (O(nr2)), even
without advanced computing facilities. The error properties of the KL-expansion
approach, and the extension to higher dimensions were not covered in this thesis
due to a time constraint, but will be an interesting topic to explore in the future.

Other topics that are worth further investigation include randomized CUR algo-
rithms and their error analysis, alternative optimization methods for hyperparameter
MLE, and iterative methods for higher dimensions.

44

References

[1] S. Ambikasaran. “Fast algorithms for dense numerical linear algebra and ap-
plications”. Ph.D. dissertation, Stanford University (2013) (cited on pp. 9,
33).

[2] S. Ambikasaran and E. Darve. “An O(N logN) Fast Direct Solver for Partial
Hierarchically Semi-Separable Matrices”. Journal of Scientific Computing 57
(Dec. 2013). doi: 10.1007/s10915-013-9714-z (cited on p. 23).

[3] S. Ambikasaran et al. “Fast Direct Methods for Gaussian Processes”. IEEE
Transactions on Pattern Analysis and Machine Intelligence 38.2 (2016), pp. 252–
265. doi: 10.1109/TPAMI.2015.2448083. url: https://arxiv.org/abs/
1403.6015 (cited on p. 32).

[4] M. Anitescu, J. Chen, and L. Wang. “A Matrix-Free Approach for Solving the
Gaussian Process Maximum Likelihood Problem”. 2011 (cited on p. 34).

[5] H. Avron and S. Toledo. “Randomized Algorithms for Estimating the Trace
of an Implicit Symmetric Positive Semi-Definite Matrix”. J. ACM 58.2 (Apr.
2011). issn: 0004-5411. doi: 10.1145/1944345.1944349. url: https://doi.
org/10.1145/1944345.1944349 (cited on p. 35).

[6] J. Ballani and D. Kressner. “Matrices with Hierarchical Low-Rank Structures”.
Vol. 2173. Jan. 2016. isbn: 978-3-319-49886-7. doi: 10.1007/978-3-319-
49887-4_3 (cited on p. 23).

[7] S. Chandrasekaran et al. “Some Fast Algorithms for Sequentially Semisepara-
ble Representations”. SIAM Journal on Matrix Analysis and Applications 27.2
(2005), pp. 341–364. doi: 10.1137/S0895479802405884 (cited on p. 23).

[8] C.-A. Cheng and B. Boots. “Variational Inference for Gaussian Process Models
with Linear Complexity”. Proceedings of the 31st International Conference on
Neural Information Processing Systems. 2017, pp. 5190–5200 (cited on p. 34).

[9] H. Cheng et al. “On the Compression of Low Rank Matrices”. SIAM Journal on
Scientific Computing 26.4 (2005), pp. 1389–1404. doi: 10.1137/030602678.
url: https://doi.org/10.1137/030602678 (cited on pp. 5, 13).

[10] M. Deisenroth and J. W. Ng. “Distributed Gaussian Processes”. Proceedings
of the 32nd International Conference on Machine Learning, PMLR. 37. 2015,
pp. 1481–1490 (cited on p. 34).

[11] C. Eckart and G. Young. “The approximation of one matrix by another of
lower rank”. Psychometrika 1 (1936), pp. 211–218 (cited on p. 1).

45

https://doi.org/10.1007/s10915-013-9714-z
https://doi.org/10.1109/TPAMI.2015.2448083
https://arxiv.org/abs/1403.6015
https://arxiv.org/abs/1403.6015
https://doi.org/10.1145/1944345.1944349
https://doi.org/10.1145/1944345.1944349
https://doi.org/10.1145/1944345.1944349
https://doi.org/10.1007/978-3-319-49887-4_3
https://doi.org/10.1007/978-3-319-49887-4_3
https://doi.org/10.1137/S0895479802405884
https://doi.org/10.1137/030602678
https://doi.org/10.1137/030602678

[12] J. R. Gardner et al. “Product kernel interpolation for scalable gaussian pro-
cesses”. AISTATS. 2018, pp. 1407–1416 (cited on p. 34).

[13] C. J. Geoga, M. Anitescu, and M. L. Stein. “Scalable Gaussian Process Compu-
tations Using Hierarchical Matrices”. Journal of Computational and Graphical
Statistics 29 (2019), pp. 227–237 (cited on p. 32).

[14] A. Gillman, P. Young, and P.-G. Martinsson. “A direct solver with O(N) com-
plexity for integral equations on one-dimensional domains”. Frontiers of Math-
ematics in China 7 (May 2011). doi: 10.1007/s11464-012-0188-3 (cited on
p. 23).

[15] L. Greengard et al. “Fast direct solvers for integral equations in complex three-
dimensional domains”. Acta Numerica 18 (May 2009), pp. 243–275. doi: 10.
1017/S0962492906410011 (cited on p. 23).

[16] P. Greengard. “Efficient Fourier representations of families of Gaussian pro-
cesses”. ArXiv abs/2109.14081 (2021). url: https://arxiv.org/abs/2109.
14081 (cited on p. 33).

[17] P. Greengard and M. O’Neil. “Efficient reduced-rank methods for Gaussian
processes with eigenfunction expansions”. ArXiv (2021). url: https://arxiv.
org/abs/2108.05924v1 (cited on pp. 33, 40, 41).

[18] M. Gu and S. C. Eisenstat. “Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization”. SIAM Journal on Scientific Computing
17.4 (1996), pp. 848–869. doi: 10.1137/0917055. url: https://doi.org/
10.1137/0917055 (cited on p. 4).

[19] W. Hackbusch. “A Sparse Matrix Arithmetic Based on H-Matrices. Part I:
Introduction to H-Matrices.” Computing 62 (Apr. 1999), pp. 89–108. doi:
10.1007/s006070050015 (cited on p. 23).

[20] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Structure with Ran-
domness: Probabilistic Algorithms for Constructing Approximate Matrix De-
compositions”. SIAM Review 53.2 (2011), pp. 217–288. url: https://arxiv.
org/abs/0909.4061 (cited on pp. 2–4, 19).

[21] J. Hensman et al. “MCMC for Variationally Sparse Gaussian Processes”. Ad-
vances in Neural Information Processing Systems. Ed. by C. Cortes et al.
Vol. 28. Curran Associates, Inc., 2015. url: https://proceedings.neurips.
cc/paper/2015/file/6b180037abbebea991d8b1232f8a8ca9- Paper.pdf
(cited on p. 34).

[22] K. L. Ho and L. Ying. “Hierarchical interpolative factorization for elliptic oper-
ators: Integral equations”. Communications on Pure and Applied Mathematics
(2015) (cited on pp. 12, 18).

[23] K. L. Ho and L. Greengard. “A fast direct solver for structured linear sys-
tems by recursive skeletonization”. SIAM Journal on Scientific Computing 34
(2012), pp. 2507–2532 (cited on p. 23).

46

https://doi.org/10.1007/s11464-012-0188-3
https://doi.org/10.1017/S0962492906410011
https://doi.org/10.1017/S0962492906410011
https://arxiv.org/abs/2109.14081
https://arxiv.org/abs/2109.14081
https://arxiv.org/abs/2108.05924v1
https://arxiv.org/abs/2108.05924v1
https://doi.org/10.1137/0917055
https://doi.org/10.1137/0917055
https://doi.org/10.1137/0917055
https://doi.org/10.1007/s006070050015
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061
https://proceedings.neurips.cc/paper/2015/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf

[24] M. F. Hutchinson. “A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines”. Communications in Statistics - Simulation
and Computation 19.2 (1990), pp. 433–450 (cited on pp. 34, 35).

[25] C. G. Kaufman, M. J. Schervish, and D. W. Nychka. “Covariance Tapering
for Likelihood-Based Estimation in Large Spatial Data Sets”. Journal of the
American Statistical Association 103.2 (484 2008), pp. 1545–1555 (cited on
p. 34).

[26] H.-C. Kim and Z. Ghahramani. “Bayesian Gaussian Process Classification with
the EM-EP Algorithm”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 28.12 (2006), pp. 1948–1959. doi: 10.1109/TPAMI.2006.238
(cited on p. 34).

[27] L. Lin, J. Lu, and L. Ying. “Fast construction of hierarchical matrix represen-
tation from matrix–vector multiplication”. Journal of Computational Physics
230 (2011), pp. 4071–4087 (cited on p. 23).

[28] M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved
data analysis”. Proceedings of the National Academy of Sciences 106.3 (2009),
pp. 697–702. doi: 10.1073/pnas.0803205106. url: https://www.pnas.
org/doi/abs/10.1073/pnas.0803205106 (cited on p. 6).

[29] P. G. Martinsson. “A Fast Randomized Algorithm for Computing a Hierar-
chically Semiseparable Representation of a Matrix”. SIAM Journal on Ma-
trix Analysis and Applications 32.4 (2011), pp. 1251–1274. doi: 10.1137/
100786617. url: https://doi.org/10.1137/10078661 (cited on p. 17).

[30] P. G. Martinsson. “Compressing rank-structured matrices via randomized sam-
pling”. SIAM Journal on Scientific Computing 38 (2016), A1959–A1986 (cited
on pp. 19, 22).

[31] P. G. Martinsson. “Randomized methods for matrix computations”. IAS/Park
City Mathematics Series (2018). url: https://arxiv.org/abs/1607.01649
(cited on pp. 2, 3, 6).

[32] P. Martinsson and V. Rokhlin. “A fast direct solver for boundary integral
equations in two dimensions”. Journal of Computational Physics 205.1 (2005),
pp. 1–23. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2004.
10.033. url: https://www.sciencedirect.com/science/article/pii/
S0021999104004462 (cited on pp. 8, 13, 17).

[33] P.-G. Martinsson. Fast Direct Solvers for Elliptic PDEs. SIAM, 2019. isbn:
978-1-61197-603-8. doi: https://doi.org/10.1137/1.9781611976045 (cited
on pp. 8, 9, 17, 22).

[34] A. W. Max. “Inverting modified matrices”. Memorandum Rept. 42, Statistical
Research Group. Princeton Univ., 1950, p. 4 (cited on p. 7).

[35] R. A. Meyer et al. “Hutch++: Optimal Stochastic Trace Estimation”. Pro-
ceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA) 2021
(2021), pp. 142–155. doi: 10.1137/1.9781611976496.16 (cited on p. 35).

47

https://doi.org/10.1109/TPAMI.2006.238
https://doi.org/10.1073/pnas.0803205106
https://www.pnas.org/doi/abs/10.1073/pnas.0803205106
https://www.pnas.org/doi/abs/10.1073/pnas.0803205106
https://doi.org/10.1137/100786617
https://doi.org/10.1137/100786617
https://doi.org/10.1137/10078661
https://arxiv.org/abs/1607.01649
https://doi.org/https://doi.org/10.1016/j.jcp.2004.10.033
https://doi.org/https://doi.org/10.1016/j.jcp.2004.10.033
https://www.sciencedirect.com/science/article/pii/S0021999104004462
https://www.sciencedirect.com/science/article/pii/S0021999104004462
https://doi.org/https://doi.org/10.1137/1.9781611976045
https://doi.org/10.1137/1.9781611976496.16

[36] V. Minden et al. “Fast Spatial Gaussian Process Maximum Likelihood Estima-
tion via Skeletonization Factorizations”. SIAM Journal on Multiscale Modeling
and Simulation 15.4 (2017), pp. 1584–1611. doi: https://doi.org/10.1137/
17M1116477. url: https://arxiv.org/abs/1603.08057 (cited on pp. 13,
32, 34, 36).

[37] H. Nickisch and C. E. Rasmussen. “Approximations for Binary Gaussian Pro-
cess Classification”. Journal of Machine Learning Research 9 (2008), pp. 2035–
2078 (cited on p. 34).

[38] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. the MIT Press, 2006 (cited on pp. 24, 26–29).

[39] J. Riihimaki and A. Vehtari. “Laplace Approximation for Logistic Gaussian
Process Density Estimation and Regression”. Bayesian Analysis 9.2 (2014),
pp. 425–448 (cited on p. 34).

[40] F. Roosta-Khorasani and U. Ascher. “Improved Bounds on Sample Size for
Implicit Matrix Trace Estimators”. 15.5 (Oct. 2015), pp. 1187–1212. issn:
1615-3375. doi: 10.1007/s10208-014-9220-1. url: https://doi.org/
10.1007/s10208-014-9220-1 (cited on p. 35).

[41] H. Samet. “The Quadtree and Related Hierarchical Data Structures”. ACM
Computing Surveys 16.2 (1984), pp. 187–260. url: https://doi.org/10.
1145/356924.356930 (cited on p. 10).

[42] J. Sherman and W. J. Morrison. “Adjustment of an Inverse Matrix Corre-
sponding to a Change in One Element of a Given Matrix”. The Annals of Math-
ematical Statistics 21.1 (1950), pp. 124–127. doi: 10.1214/aoms/1177729893.
url: https://doi.org/10.1214/aoms/1177729893 (cited on p. 7).

[43] M. L. Stein, J. Chen, and M. Anitescu. “Stochastic Approximation of Score
Functions for Gaussian Processes”. The Annals of Applied Statistics 7.2 (2013),
pp. 1162–1191 (cited on p. 34).

[44] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM,
2019. isbn: 978-1-611975-93-2 (cited on p. 40).

[45] S. Voronin and P.-G. Martinsson. “Efficient algorithms for cur and inter-
polative matrix decompositions”. Advances in Computational Mathematics 43
(June 2017), pp. 1–22. doi: 10.1007/s10444-016-9494-8 (cited on pp. 5, 6).

[46] K. A. Wang et al. “Exact Gaussian Processes on a Million Data Points”. Ad-
vances in Neural Information Processing Systems. 1312. 2019, pp. 14648–14659
(cited on p. 33).

[47] R. Wang, Y. Li, and E. Darve. “On The Numerical Rank Of Radial Basis
Function Kernels In High Dimensions”. SIAM Journal on Matrix Analysis
and Applications 39.4 (2018), pp. 1810–1835 (cited on p. 23).

[48] C. Williams and M. Seeger. “Using the Nyström Method to Speed Up Kernel
Machines”. Advances in Neural Information Processing Systems. Ed. by T.
Leen, T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2000 (cited on pp. 32,
33).

48

https://doi.org/https://doi.org/10.1137/17M1116477
https://doi.org/https://doi.org/10.1137/17M1116477
https://arxiv.org/abs/1603.08057
https://doi.org/10.1007/s10208-014-9220-1
https://doi.org/10.1007/s10208-014-9220-1
https://doi.org/10.1007/s10208-014-9220-1
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1007/s10444-016-9494-8

[49] F. Woolfe et al. “A fast randomized algorithm for the approximation of ma-
trices”. Applied and Computational Harmonic Analysis 25.3 (2008), pp. 335–
366. issn: 1063-5203. doi: https://doi.org/10.1016/j.acha.2007.
12.002. url: https://www.sciencedirect.com/science/article/pii/
S1063520307001364 (cited on p. 3).

[50] J. Xia. “Randomized Sparse Direct Solvers”. SIAM Journal on Matrix Analysis
and Applications 34.1 (2013), pp. 197–227. doi: 10.1137/12087116X (cited
on p. 23).

[51] J. Xia et al. “Fast algorithms for hierarchically semiseparable matrices”. Nu-
mer. Linear Algebra Appl. 17 (2010), pp. 953–976 (cited on p. 23).

49

https://doi.org/https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/https://doi.org/10.1016/j.acha.2007.12.002
https://www.sciencedirect.com/science/article/pii/S1063520307001364
https://www.sciencedirect.com/science/article/pii/S1063520307001364
https://doi.org/10.1137/12087116X

	title-page
	jchang_masters_thesis
	Acknowledgements
	List of tables
	List of figures
	Introduction
	Preliminaries: Numerical Linear Algebra
	Low-rank approximations
	Randomized SVD
	Computing the range-finder
	Randomized approximate SVD
	A single-pass algorithm for the randomized eigenvalue decomposition
	Computational complexity

	Rank-revealing factorizations, and computing the interpolative decomposition (ID)
	CUR approximation algorithms
	Adaptive cross approximation (ACA)

	Matrix identities
	Inverting a block partitioned matrix
	Sherman-Morrison-Woodbury inversion formulas
	The matrix inversion lemma

	Weinstein–Aronszajn (Sylvester) determinant identity

	Hierarchical matrices
	Taxonomy of H-matrices
	k-d tree structure and indexing notation
	The hierarchical off-diagonal low-rank (HODLR) framework
	The HODLR factorization and solver
	Computational complexity
	Computing the determinant

	Recursive skeletonization factorization (RSF)
	Computational complexity and accelerating the recursive skeletonization factorization
	Higher dimensions
	Computing the determinant

	Trace estimation via matrix peeling
	Extracting the trace
	Computational complexity

	References

	Fast Frameworks for Gaussian processes
	Overview of Gaussian processes
	Gaussian processes for statistical inference
	Bayesian linear model formulation
	Function space formulation
	Hyperparameter maximum likelihood estimation
	Kernels, Gram matrices, and the curse of dimensionality

	Survey of fast algorithms for Gaussian processes
	Hierarchical matrix factorizations
	Analytic techniques
	Iterative methods
	Approximate methods

	Fitting kernel hyperparameters
	Evaluating the marginal log-likelihood and its gradient
	Trace estimation

	Numerical results

	Prediction
	Direct randomized approximate spectral decomposition approach
	Numerical results

	Hierarchical matrix factorization approach
	HODLR factorization
	Recursive skeletonization factorization
	Numerical results

	Analytical techniques for low-rank approximations
	Computing the Karhunen-Loéve expansion of a GP
	GP regression via KL-expansion
	Numerical results

	Results
	Conclusion

	References

